Duchene, J.,
A Significant Plane for Two-Class Discrimination Problems,
PAMI(8), No. 4, July 1986, pp. 557-559.
BibRef
8607
Aladjem, M.[Mayer],
Linear Discriminant-Analysis for Two Classes via Removal of
Classification Structure,
PAMI(19), No. 2, February 1997, pp. 187-192.
IEEE DOI
9703
BibRef
Earlier:
Two-Class Pattern Discrimination via Recursive Optimization
of Patrick-Fisher Distance,
ICPR96(II: 60-64).
IEEE DOI
9608
BibRef
Earlier:
Discriminant plots obtained via removal of classification structures,
ICPR94(B:67-71).
IEEE DOI
9410
(Ben-Gurion Univ., IL)
BibRef
Aladjem, M.[Mayer],
Training of an ML Neural Network for Classification via
Recursive Reduction of the Class Separation,
ICPR98(Vol I: 450-452).
IEEE DOI
9808
BibRef
Aladjem, M.[Mayer],
Parametric and nonparametric linear mappings of multidimensional data,
PR(24), No. 6, 1991, pp. 543-553.
Elsevier DOI
0401
BibRef
Shapira, Y.[Yair],
Gath, I.[Isak],
Feature selection for multiple binary classification problems,
PRL(20), No. 8, August 1999, pp. 823-832.
BibRef
9908
Hand, D.J.[David J.],
Vinciotti, V.[Veronica],
Choosing k for two-class nearest neighbour classifiers with unbalanced
classes,
PRL(24), No. 9-10, June 2003, pp. 1555-1562.
Elsevier DOI
0304
BibRef
DeVore, M.D.,
Estimates of Error Probability for Complex Gaussian Channels with
Generalized Likelihood Ratio Detection,
PAMI(27), No. 10, October 2005, pp. 1580-1591.
IEEE DOI
0509
Two-class hypothesis testing.
BibRef
Marrocco, C.[Claudio],
Molinara, M.[Mario],
Tortorella, F.[Francesco],
Exploiting AUC for optimal linear combinations of dichotomizers,
PRL(27), No. 8, June 2006, pp. 900-907.
Elsevier DOI
0605
BibRef
Earlier:
AUC-Based Linear Combination of Dichotomizers,
SSPR06(714-722).
Springer DOI
0608
BibRef
Earlier:
Estimating the ROC Curve of Linearly Combined Dichotomizers,
CIAP05(778-785).
Springer DOI
0509
Two-class classifiers; ROC curve; Multiple classifier systems; Linear combiners
See also Towards a Linear Combination of Dichotomizers by Margin Maximization.
BibRef
El Ayadi, M.M.H.[Moataz M.H.],
Kamel, M.S.[Mohamed S.],
Karray, F.[Fakhri],
Toward a tight upper bound for the error probability of the binary
Gaussian classification problem,
PR(41), No. 6, June 2008, pp. 2120-2132.
Elsevier DOI
0802
Binary classification; Bayesian decision rule; Decision boundary;
Error probability; Monte-Carlo simulations; Multivariate normal
distribution; Quadratic surfaces
BibRef
Bounsiar, A.[Abdenour],
Beauseroy, P.[Pierre],
Grall-Maes, E.[Edith],
General solution and learning method for binary classification with
performance constraints,
PRL(29), No. 10, 15 July 2008, pp. 1455-1465.
Elsevier DOI
0711
Statistical hypothesis testing; Performance constraints;
Neyman-Pearson criterion; Chow's rule;
Classification with rejection option; Kernel methods
BibRef
Chen, W.,
Metz, C.E.,
Giger, M.L.,
Drukker, K.,
A Novel Hybrid Linear/Nonlinear Classifier for Two-Class Classification:
Theory, Algorithm, and Applications,
MedImg(29), No. 2, February 2010, pp. 428-441.
IEEE DOI
1002
BibRef
Zhong, S.P.[Shang-Ping],
Chen, D.[Daya],
Xu, Q.F.[Qiao-Fen],
Chen, T.S.[Tian-Shun],
Optimizing the Gaussian kernel function with the formulated kernel
target alignment criterion for two-class pattern classification,
PR(46), No. 7, July 2013, pp. 2045-2054.
Elsevier DOI
1303
Gaussian kernel function; Fast kernel learning method; Two-class
pattern classification; Formulated kernel target alignment criterion;
Euler-Maclaurin formula; Determined global minimum point; High time
efficiency
BibRef
Liu, M.X.[Ming-Xia],
Zhang, D.Q.[Dao-Qiang],
Chen, S.C.[Song-Can],
Xue, H.[Hui],
Joint Binary Classifier Learning for ECOC-Based Multi-Class
Classification,
PAMI(38), No. 11, November 2016, pp. 2335-2341.
IEEE DOI
1610
Classification algorithms
BibRef
Yellamraju, T.,
Boutin, M.[Mireille],
Clusterability and Clustering of Images and Other 'Real'
High-Dimensional Data,
IP(27), No. 4, April 2018, pp. 1927-1938.
IEEE DOI
1802
image representation, pattern clustering, probability,
1D random projection, binary clustering,
random projection
BibRef
Ma, J.,
Jiang, X.,
Jiang, J.,
Zhao, J.,
Guo, X.,
LMR: Learning a Two-Class Classifier for Mismatch Removal,
IP(28), No. 8, August 2019, pp. 4045-4059.
IEEE DOI
1907
computational complexity, image classification, image matching,
image representation, image retrieval, supervised learning,
mismatch removal
BibRef
Denitto, M.,
Bicego, M.,
Farinelli, A.,
Vascon, S.,
Pelillo, M.,
Biclustering with dominant sets,
PR(104), 2020, pp. 107318.
Elsevier DOI
2005
Biclustering, Dominant set, Replicator dynamics, Prior knowledge
BibRef
Gao, H.J.[Han-Jia],
Bai, Z.J.[Zheng-Jian],
Gao, W.G.[Wei-Guo],
Zhang, S.Q.[Shu-Qin],
Penalized-regression-based bicluster localization,
PR(117), 2021, pp. 107984.
Elsevier DOI
2106
Biclustering, Penalized regression-based model,
Alternating direction method of multipliers (ADMM),
Difference of convex (DC) programming
BibRef
Liao, S.[Shuai],
Gavves, E.[Efstratios],
Oh, C.Y.[Chang-Yong],
Snoek, C.G.M.[Cees G. M.],
Quasibinary Classifier for Images with Zero and Multiple Labels,
ICPR21(8743-8750)
IEEE DOI
2105
Correlation, Face recognition, Reliability, Image classification,
Binary classifier, softmax classifier, image classification
BibRef
Makarova, A.[Alexandra],
Kurbakov, M.[Mikhail],
Sulimova, V.[Valentina],
Mean Decision Rules Method with Smart Sampling for Fast Large-Scale
Binary SVM Classification,
ICPR21(8212-8219)
IEEE DOI
2105
Support vector machines, Training, Gradient methods,
Random access memory, Tools, Big Data,
big data sets
BibRef
Georgescu, M.I.[Mariana-Iuliana],
Ionescu, R.T.[Radu Tudor],
Clustering Images by Unmasking: A New Baseline,
ICIP19(1580-1584)
IEEE DOI
1910
Clustering, unmasking, unsupervised learning, agglomerative clustering
BibRef
Bauckhage, C.[Christian],
Brito, E.,
Cvejoski, K.,
Ojeda, C.,
Sifa, R.[Rafet],
Wrobel, S.,
Ising Models for Binary Clustering via Adiabatic Quantum Computing,
EMMCVPR17(3-17).
Springer DOI
1805
BibRef
Lin, W.J.,
Two-class clustering of nonlinearly separable data by using
shape-specific points,
IVMSP16(1-5)
IEEE DOI
1608
Clustering algorithms
BibRef
Ali, M.[Mohsen],
Ho, J.[Jeffrey],
Deconstructing Binary Classifiers in Computer Vision,
ACCV14(III: 468-482).
Springer DOI
1504
BibRef
Zhang, X.[Xiao],
Liang, L.[Lin],
Shum, H.Y.[Heung-Yeung],
Spectral error correcting output codes for efficient multiclass
recognition,
ICCV09(1111-1118).
IEEE DOI
0909
ECOC framework extends to any binary classifier in multi-class case.
NP Hard problem. Get approximation.
BibRef
Fainzilberg, L.S.,
Why Relevant Features May Be Unuseful in Statistical Recognition
of Two Classes,
ICPR96(II: 730-734).
IEEE DOI
9608
BibRef
Earlier:
Interconnection between features properties and probability of error in
statistical recognition of two classes,
ICPR94(B:544-546).
IEEE DOI
9410
(V. M. Glushkov Institute of Cybernetics, UKR)
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
One Class Clustering, One Class Classification .