Hopfield, J.J., and
Tank, D.W.,
Computing with Neural Circuits: A Model,
Science(233), August 8, 1986, pp. 625-633.
BibRef
8608
And:
Neural Computations of Decisions in Optimization Problems,
BioCyber(52), 1985, pp. 141-152.
BibRef
Hopfield, J.J.,
Neurons with Graded Response Have Collective
Computational Properties Like Those of Two-State Neurons,
NAS(81), May 1984, pp. 3088-3092.
BibRef
8405
And:
Neural Networks and Physical Systems with
Emergent Collective Computational Abilities,
NAS(79), 1982, pp. 2554-2558.
BibRef
Tank, D.W., and
Hopfield, J.J.,
Simple 'neural' optimization networks: An A/D converter,
signal decision circuit and a linear programming circuit,
CirSys(33), May 1986, pp. 533-541.
Time continuous recurrent artificial neural network for
optimization problems.
BibRef
8605
Kamgar-Parsi, B., and
Kamgar-Parsi, B.,
On Problem Solving with Hopfield Netowrks,
BioCyber(62), 1990, pp. 415-423.
BibRef
9000
Ney, H.,
On the Probabilistic-Interpretation of Neural-Network
Classifiers and Discriminative Training Criteria,
PAMI(17), No. 2, February 1995, pp. 107-119.
IEEE DOI Non-parametric classifiers and neural networks have similar properties.
BibRef
9502
Suganthan, P.N.,
Teoh, E.K.,
Mital, D.P.,
Pattern-Recognition by Homomorphic Graph Matching
Using Hopfield Neural Networks,
IVC(13), No. 1, February 1995, pp. 45-60.
Elsevier DOI
BibRef
9502
And:
Self-Organizing Hopfield Network for Attributed
Relational Graph Matching,
IVC(13), No. 1, February 1995, pp. 61-73.
Elsevier DOI
BibRef
Suganthan, P.N.,
Teoh, E.K.,
Mital, D.P.,
Pattern-Recognition by Graph Matching Using the Potts MFT
Neural Networks,
PR(28), No. 7, July 1995, pp. 997-1009.
Elsevier DOI
Hopfield Networks. Mean-field annealing.
BibRef
9507
Suganthan, P.N.,
Teoh, E.K.,
Mital, D.P.,
Optimal Mapping of Graph Homomorphism onto Self-Organizing
Hopfield Network,
IVC(15), No. 9, September 1997, pp. 679-694.
Elsevier DOI
9709
BibRef
Wei, L., and
Nasrabadi, N.M.,
Object Recognition Based on Graph Matching Implemented by a
Hopfield-Style Neural Network,
IJCNNJune 1989, pp. II 287-290.
Hopfield Networks. Matching that uses the Hopfield network as a parallel processing technique.
BibRef
8906
Young, S.S.[Susan S.],
Scott, P.D.,
Nasrabadi, N.M.,
Object Recognition Using Multilayer Hopfield Neural-Network,
IP(6), No. 3, March 1997, pp. 357-372.
IEEE DOI
9703
BibRef
Earlier:
CVPR94(417-422).
IEEE DOI
BibRef
Young, S.S.[Susan S.],
Scott, P.D.,
Bandera, C.,
Foveal Automatic Target Recognition Using a
Multiresolution Neural-Network,
IP(7), No. 8, August 1998, pp. 1122-1135.
IEEE DOI
9808
BibRef
Earlier:
Foveal Automatic Target Recognition Using a Neural Network,
ICIP96(I: 303-306).
IEEE DOI
BibRef
Nasrabadi, N.M.,
Li, W.,
Object Recognition by a Hopfield Neural Network,
SMC(21), 1991, pp. 1523-1535.
BibRef
9100
Earlier:
Add A3:
Choo, C.Y.,
ICCV90(325-328).
IEEE DOI
0403
BibRef
Yu, S.S.[Shiaw-Shian],
Tsai, W.H.[Wen-Hsiang],
Relaxation by the Hopfield Neural Network,
PR(25), No. 2, February 1992, pp. 197-209.
Elsevier DOI
BibRef
9202
Basak, J.,
Chaudhury, S.,
Pal, S.K.,
Majumder, D.D.[D. Dutta],
Matching of Structural Shape Descriptions with Hopfield Net,
PRAI(7), 1993, pp. 377-404.
BibRef
9300
Chen, T.W.[Tsu Wang], and
Lin, W.C.[Wei Chung],
A Neural-Network Approach to CSG-Based 3-D Object Recognition,
PAMI(16), No. 7, July 1994, pp. 719-726.
IEEE DOI
BibRef
9407
Earlier:
CVPR91(718-719).
IEEE DOI
BibRef
Earlier: A2, A1:
CSG-Based Object Recognition Using Range Images,
ICPR88(I: 99-103).
IEEE DOI
See also Artificial Neural Networks for 3-D Motion Analysis I: Rigid Motion.
BibRef
Lampinen, J.,
Oja, E.,
Distortion Tolerant Pattern-Recognition Based on
Self-Organizing Feature-Extraction,
TNN(6), No. 3, May 1995, pp. 539-547.
BibRef
9505
Salzberg, S.,
Delcher, A.L.,
Heath, D.,
Kasif, S.,
Best-Case Results for Nearest-Neighbor Learning,
PAMI(17), No. 6, June 1995, pp. 599-608.
IEEE DOI
BibRef
9506
Cios, K.J.,
Shin, I.,
Image Recognition Neural-Network: IRNN,
NeurComp(7), No. 2, March 1995, pp. 159-185.
BibRef
9503
Tseng, Y.H.,
Hwang, J.N.,
Sheehan, F.H.,
Three-Dimensional Object Representation and Invariant Recognition
Using Continuous Distance Transform Neural Networks,
TNN(8), No. 1, January 1997, pp. 141-147.
9701
BibRef
Tseng, Y.H.,
Hwang, J.N.,
Sheehan, F.H.,
3-D Heart Modeling and Motion Estimation Based on
Continuous Distance Transform Neural Networks and Affine Transform,
VLSIVideo(18), No. 3, April 1998, pp. 207-218.
9806
BibRef
Lee, J.S.[Jiann-Shu],
Chen, C.H.[Chin-Hsing],
Sun, Y.N.[Yung-Nien],
Tseng, G.S.[Guan-Shu],
Occluded Objects Recognition Using Multiscale Features and
Hopfield Neural-Network,
PR(30), No. 1, January 1997, pp. 113-122.
Elsevier DOI
9702
BibRef
Earlier:
Occluded objects recognition using multiscale features and Hopfield
neural networks,
CIAP95(171-176).
Springer DOI
9509
BibRef
Huang, C.L.,
Parallel Image Segmentation Using Modified Hopfield Model,
PRL(13), 1992, pp. 345-353.
BibRef
9200
Lades, M.,
Vorbrüggen, J.C.,
Buhmann, J.M.,
Lange, J.,
von der Malsburg, C.[Christoph],
Würtz, R.P., and
Konen, W.,
Distortion Invariant Object Recognition in
the Dynamic Link Architecture,
TC(42), No. 3, March 1993, pp. 300-311.
IEEE DOI
Face Recognition.
Elastic Graph Matching.
93% over 300 examples.
Elastic graphs, or a mesh of points. Deformable templates?
See also Object Recognition Robust Under Translations, Deformations, and Changes in Background.
BibRef
9303
Kusnezow, W.[Witali],
Horn, W.[Wilfried],
Würtz, R.P.[Rolf P.],
Fast image processing with constraints by solving linear PDEs,
ELCVIA(6), No. 2, September 2007, pp. 22-36.
DOI Link
0803
BibRef
Westphal, G.,
Wurtz, R.P.,
Fast object and pose recognition through minimum entropy coding,
ICPR04(III: 53-56).
IEEE DOI
0409
BibRef
Cote, S.,
Tatnall, A.R.L.,
The Hopfield Neural-Network as a Tool for Feature Tracking and
Recognition from Satellite Sensor Images,
JRS(18), No. 4, March 10 1997, pp. 871-885.
9703
BibRef
Shen, D.G.,
Ip, H.H.S.,
A Hopfield Neural-Network for Adaptive Image Segmentation:
An Active Surface Paradigm,
PRL(18), No. 1, January 1997, pp. 37-48.
9704
See also Affine-Invariant Active Contour Model (AI-Snake) for Model-Based Segmentation, An.
BibRef
Li, S.Z.[Stan Z.],
Soh, W.Y.C.[William Y.C.],
Teoh, E.K.[Eam Khwang],
Relaxation Labeling Using Augmented Lagrange-Hopfield Method,
PR(31), No. 1, January 1998, pp. 73-81.
Elsevier DOI
9802
BibRef
Li, S.Z.,
Relaxation labeling using Lagrange-Hopfield method,
ICIP95(I: 266-269).
IEEE DOI
9510
BibRef
Achour, K.[Karim],
Mahiddine, L.[Lyes],
Hopfield Neural Network Based Stereo Matching Algorithm,
JMIV(16), No. 1, January 2002, pp. 17-29.
DOI Link
0202
BibRef
Li, W.J.[Wen-Jing],
Lee, T.[Tong],
Object recognition and articulated object learning by accumulative
Hopfield matching,
PR(35), No. 9, September 2002, pp. 1933-1948.
Elsevier DOI
0206
BibRef
Bagdanov, A.D.[Andrew D.],
Worring, M.[Marcel],
First order Gaussian graphs for efficient structure classification,
PR(36), No. 6, June 2003, pp. 1311-1324.
Elsevier DOI
0304
BibRef
Schaffer, M.,
Chen, T.,
Object Parts Matching Using Hopfield Neural Networks,
CAMP95(xx).
BibRef
9500
Plakhov, A.Yu.,
The converging unlearning algorithm for the Hopfield neural network:
optimal strategy,
ICPR94(B:104-106).
IEEE DOI
9410
BibRef
Parvin, B., and
Medioni, G.G.,
A Dynamic System for Object Description and Correspondence,
CVPR91(393-399).
IEEE DOI
BibRef
9100
USC Computer Vision
BibRef
And: A1 only:
Ph.D.Thesis (EE), July 1991,
BibRef
USC_IRISTR-286.
Perceptual Grouping. Neural Network based approach to matching.
Find boundary groupings in range data using corners, junctions and
segments.
BibRef
Parvin, B., and
Medioni, G.G.,
A Layered Network for Correspondence of 3-D Objects,
CRA91(1808-1813).
BibRef
9100
USC Computer Vision
BibRef
Earlier:
A Constraint Satisfaction Network for Matching 3D Objects,
IJCNN89(281-286), Washington, DC, June 1989.
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Graph Matching, Continuous Relaxation, Constraint Satisfaction .