Rätsch, G.[Gunnar],
Mika, S.[Sebastian],
Schölkopf, B.[Bernhard],
Müller, K.R.[Klaus-Robert],
Constructing Boosting Algorithms from SVMs:
An Application to One-Class Classification,
PAMI(24), No. 9, September 2002, pp. 1184-1199.
IEEE Abstract.
0209
Equivalence of SVM (
See also Support Vector Machines. ) and boosting-like algorithm
(
See also Boosting Performance in Neural Networks. ).
BibRef
Camastra, F.[Francesco],
Verri, A.[Alessandro],
A Novel Kernel Method for Clustering,
PAMI(27), No. 5, May 2005, pp. 801-804.
IEEE Abstract.
0501
Inspired by k-Means, iterative refinement of culster by a one-class SVM.
BibRef
Tran, Q.A.[Quang-Anh],
Li, X.[Xing],
Duan, H.X.[Hai-Xin],
Efficient performance estimate for one-class support vector machine,
PRL(26), No. 8, June 2005, pp. 1174-1182.
Elsevier DOI
0506
BibRef
Muñoz, A.[Alberto],
Moguerza, J.M.[Javier M.],
Estimation of High-Density Regions Using One-Class Neighbor Machines,
PAMI(28), No. 3, March 2006, pp. 476-480.
IEEE DOI
0602
BibRef
Choi, Y.S.[Young-Sik],
Least squares one-class support vector machine,
PRL(30), No. 13, 1 October 2009, pp. 1236-1240.
Elsevier DOI
0909
LS (least squares) one-class SVM; Proximity measure; Relevance
ranking; One-class SVM (support vector machine)
BibRef
Munoz-Mari, J.,
Bovolo, F.,
Gomez-Chova, L.,
Bruzzone, L.,
Camp-Valls, G.,
Semisupervised One-Class Support Vector Machines for Classification of
Remote Sensing Data,
GeoRS(48), No. 8, August 2010, pp. 3188-3197.
IEEE DOI
1008
BibRef
Hansen, M.S.[Michael Sass],
Sjöstrand, K.[Karl],
Ólafsdóttir, H.[Hildur],
Larsson, H.B.W.[Henrik B. W.],
Stegmann, M.B.[Mikkel B.],
Larsen, R.[Rasmus],
Robust Pseudo-hierarchical Support Vector Clustering,
SCIA07(808-817).
Springer DOI
0706
BibRef
Huang, G.X.[Guang-Xin],
Chen, H.F.[Hua-Fu],
Zhou, Z.L.[Zhong-Li],
Yin, F.[Feng],
Guo, K.[Ke],
Two-class support vector data description,
PR(44), No. 2, February 2011, pp. 320-329.
Elsevier DOI
1011
Support vector data description; D-SVDD; TC-SVDD; One-class classification
BibRef
Bilgin, G.,
Erturk, S.,
Yildirim, T.,
Segmentation of Hyperspectral Images via Subtractive Clustering and
Cluster Validation Using One-Class Support Vector Machines,
GeoRS(49), No. 8, August 2011, pp. 2936-2944.
IEEE DOI
1108
BibRef
Tohmé, M.[Mireille],
Lengellé, R.[Régis],
Maximum Margin One Class Support Vector Machines for multiclass
problems,
PRL(32), No. 13, 1 October 2011, pp. 1652-1658.
Elsevier DOI
1109
Multiclass; Support Vector Machines; Classification; Detection
BibRef
Cyganek, B.[Boguslaw],
One-Class Support Vector Ensembles for Image Segmentation and
Classification,
JMIV(42), No. 2-3, February 2012, pp. 103-117.
WWW Link.
1202
BibRef
Lian, H.[Heng],
On feature selection with principal component analysis for one-class
SVM,
PRL(33), No. 9, 1 July 2012, pp. 1027-1031.
Elsevier DOI
1202
Dimension reduction; Image retrieval; Support vector machine
BibRef
Junejo, I.N.[Imran N.],
Bhutta, A.A.[Adeel A.],
Foroosh, H.[Hassan],
Single-class SVM for dynamic scene modeling,
SIViP(7), No. 1, January 2013, pp. 45-52.
WWW Link.
1301
BibRef
Jaberi, M.[Maryam],
Pensky, M.[Marianna],
Foroosh, H.[Hassan],
SWIFT: Sparse Withdrawal of Inliers in a First Trial,
CVPR15(4849-4857)
IEEE DOI
1510
reduces the problem to sampling an extremely sparse subset of the
original population of data in one grab.
edge, line detection or multi-body structure from motion.
BibRef
di Martino, M.[Matias],
Hernandez, G.[Guzman],
Fiori, M.[Marcelo],
Fernandez, A.[Alicia],
A new framework for optimal classifier design,
PR(46), No. 8, August 2013, pp. 2249-2255.
Elsevier DOI
1304
Class imbalance; One class SVM; F-measure; Recall;
Precision; Fraud detection; Level set method
BibRef
Fiori, M.[Marcelo],
di Martino, M.[Matias],
Fernández, A.[Alicia],
An optimal multiclass classifier design,
ICPR16(480-485)
IEEE DOI
1705
Algorithm design and analysis, Level set, Nickel, Optimization,
Support vector machines, Testing, Training
BibRef
Valdés, M.[Matías],
Fiori, M.[Marcelo],
Re-Weighted L_1 Algorithms within the Lagrange Duality Framework,
IbPRIA19(I:148-160).
Springer DOI
1910
BibRef
Lee, C.[Changki],
Pegasos Algorithm for One-Class Support Vector Machine,
IEICE(E96-D), No. 5, May 2013, pp. 1223-1226.
WWW Link.
1305
BibRef
di Martino, M.[Matías],
Fernández, A.[Alicia],
Iturralde, P.[Pablo],
Lecumberry, F.[Federico],
Novel classifier scheme for imbalanced problems,
PRL(34), No. 10, 15 July 2013, pp. 1146-1151.
Elsevier DOI
1306
Class imbalance; One class SVM; F-measure; Recall; Precision;
Fraud detection
BibRef
Khan, N.M.[Naimul Mefraz],
Ksantini, R.[Riadh],
Ahmad, I.S.[Imran Shafiq],
Guan, L.[Ling],
Covariance-guided One-Class Support Vector Machine,
PR(47), No. 6, 2014, pp. 2165-2177.
Elsevier DOI
1403
Covariance
BibRef
Xiao, Y.,
Wang, H.,
Xu, W.,
Parameter Selection of Gaussian Kernel for One-Class SVM,
Cyber(45), No. 5, May 2015, pp. 927-939.
IEEE DOI
1505
Cybernetics
BibRef
Dufrenois, F.,
Noyer, J.C.,
One class proximal support vector machines,
PR(52), No. 1, 2016, pp. 96-112.
Elsevier DOI
1601
Outlier detection
BibRef
Liu, Y.[Yong],
Zhang, B.[Biling],
Chen, B.[Bin],
Yang, Y.D.[Yan-Dong],
Robust solutions to fuzzy one-class support vector machine,
PRL(71), No. 1, 2016, pp. 73-77.
Elsevier DOI
1602
One-class SVM
BibRef
Erfani, S.M.[Sarah M.],
Rajasegarar, S.[Sutharshan],
Karunasekera, S.[Shanika],
Leckie, C.[Christopher],
High-dimensional and large-scale anomaly detection using a linear
one-class SVM with deep learning,
PR(58), No. 1, 2016, pp. 121-134.
Elsevier DOI
1606
Anomaly detection
BibRef
Wu, T.[Tong],
Liang, Y.C.[Yan-Chun],
Varela, R.[Ramiro],
Wu, C.G.[Chun-Guo],
Zhao, G.Z.[Guo-Zhong],
Han, X.S.[Xiao-Song],
Self-adaptive SVDD integrated with AP clustering for one-class
classification,
PRL(84), No. 1, 2016, pp. 232-238.
Elsevier DOI
1612
One-class classifier
BibRef
Xiao, Y.C.[Ying-Chao],
Wang, H.G.[Huan-Gang],
Xu, W.L.[Wen-Li],
Ramp Loss based robust one-class SVM,
PRL(85), No. 1, 2017, pp. 15-20.
Elsevier DOI
1612
Ramp Loss function
BibRef
Wang, S.Q.[Si-Qi],
Liu, Q.A.[Qi-Ang],
Zhu, E.[En],
Porikli, F.M.[Fatih M.],
Yin, J.P.[Jian-Ping],
Hyperparameter selection of one-class support vector machine by
self-adaptive data shifting,
PR(74), No. 1, 2018, pp. 198-211.
Elsevier DOI
1711
One-class SVM
BibRef
Xue, Y.J.[Yong-Jian],
Beauseroy, P.[Pierre],
Transfer learning for one class SVM adaptation to limited data
distribution change,
PRL(100), No. 1, 2017, pp. 117-123.
Elsevier DOI
1712
BibRef
Earlier:
Multi-task learning for one-class SVM with additional new features,
ICPR16(1571-1576)
IEEE DOI
1705
Transfer learning.
Engines, Feature extraction, Kernel, Sensors,
Support vector machines, Training, Training data,
evolving feature space, multi-task learning, one-class SVM,
outliers, detection
BibRef
Zhang, W.[Wei],
Du, L.[Lan],
Li, L.[Liling],
Zhang, X.F.[Xue-Feng],
Liu, H.W.[Hong-Wei],
Infinite Bayesian one-class support vector machine based on Dirichlet
process mixture clustering,
PR(78), 2018, pp. 56-78.
Elsevier DOI
1804
Dirichlet process mixture, One-class classifiers,
One-class support vector machine, Gibbs sampling
BibRef
Xing, H.J.[Hong-Jie],
Ji, M.[Man],
Robust one-class support vector machine with rescaled hinge loss
function,
PR(84), 2018, pp. 152-164.
Elsevier DOI
1809
One-class classification, One-class support vector machine,
Hinge loss function, Half-quadratic optimization
BibRef
Xing, H.J.[Hong-Jie],
Li, L.F.[Li-Fei],
Robust least squares one-class support vector machine,
PRL(138), 2020, pp. 571-578.
Elsevier DOI
1806
One-class support vector machine,
Least square one-class support vector machine, Correntropy,
One-class classification
BibRef
Xing, H.J.[Hong-Jie],
He, Z.C.[Zi-Chuan],
Adaptive loss function based least squares one-class support vector
machine,
PRL(156), 2022, pp. 174-182.
Elsevier DOI
2205
Least squares one-class support vector machine,
One-class classification, One-class support vector machine, Loss function
BibRef
Kefi-Fatteh, T.[Takoua],
Ksantini, R.[Riadh],
Kaâniche, M.B.[Mohamed-Bécha],
Bouhoula, A.[Adel],
A novel incremental one-class support vector machine based on low
variance direction,
PR(91), 2019, pp. 308-321.
Elsevier DOI
1904
One-Class classification, Incremental learning,
Support vector machine, Low variance directions
BibRef
Cherian, A.[Anoop],
Wang, J.[Jue],
Generalized One-Class Learning Using Pairs of Complementary
Classifiers,
PAMI(44), No. 10, October 2022, pp. 6993-7009.
IEEE DOI
2209
Anomaly detection, Data models, Task analysis, Kernel,
Support vector machines, Manifolds, One-class classification,
Riemannian optimization
BibRef
Rahimzadeh-Arashloo, S.[Shervin],
lp-Norm Support Vector Data Description,
PR(132), 2022, pp. 108930.
Elsevier DOI
2209
One-class classification, Kernel methods,
Support vector data description, -norm penalty
BibRef
Xing, H.J.[Hong-Jie],
Zhang, P.P.[Ping-Ping],
Contrastive deep support vector data description,
PR(143), 2023, pp. 109820.
Elsevier DOI
2310
Deep support vector data description, Contrastive learning,
Anomaly detection, One-class classification, Hypersphere collapse
BibRef
Krawczyk, B.[Bartosz],
Wozniak, M.[Michal],
Cyganek, B.[Boguslaw],
Weighted One-Class Classifier Ensemble Based on Fuzzy Feature Space
Partitioning,
ICPR14(2838-2843)
IEEE DOI
1412
Accuracy
BibRef
Braun, A.[Andreas],
Evaluation of One-Class SVM for Pixel-Based and Segment-Based
Classification in Remote Sensing,
PCVIA10(B:160).
PDF File.
1009
BibRef
Kim, P.J.[Pyo Jae],
Chang, H.J.[Hyung Jin],
Choi, J.Y.[Jin Young],
Fast incremental learning for one-class support vector classifier using
sample margin information,
ICPR08(1-4).
IEEE DOI
0812
BibRef
Labusch, K.[Kai],
Timm, F.[Fabian],
Martinetz, T.[Thomas],
Simple Incremental One-Class Support Vector Classification,
DAGM08(xx-yy).
Springer DOI
0806
BibRef
Martinetz, T.[Thomas],
MinOver Revisited for Incremental Support-Vector-Classification,
DAGM04(187-194).
Springer DOI
0505
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Support Vector Machines, SVM, Surveys, Reviews, General .