Cortes, C.[Corinna],
Vapnik, V.[Vladimir],
Support-Vector Networks,
MachLearn(20), No. 3, 1995, pp. 273-297.
Initial description for SVM ideas.
0906
BibRef
Vapnik, V.[Vladimir],
The Support Vector Method,
ICANN97(263-271).
0906
BibRef
Schölkopf, B.[Bernhard],
Burges, C.[Chris],
Vapnik, V.[Vladimir],
Incorporating Invariances in Support Vector Learning Machines,
ICANN96(47-52).
0906
BibRef
Chang, C.C.,
Lin, C.J.,
LIBSVM: a library for support vector machines,
Online2001.
WWW Link.
Code, Support Vector Machines.
BibRef
0100
LIBSVMTL: a Support Vector Machine Template Library,
Online2001.
HTML Version.
Code, Support Vector Machines. Based on LIBSVM above.
BibRef
0100
Schölkopf, B.[Bernhard],
Support Vector Machines,
Oldenbourg Verlag: Munich, 1997.
BibRef
9700
Schölkopf, B.[Bernhard],
Support Vector Learning,
R. Oldenbourg VerlagMunich, 1997.
WWW Link.
BibRef
9700
Scholkopf, B.[Bernhard],
Smola, A.J.[Alexander J.],
Muller, K.R.[Klaus-Robert],
Bartlett, P.L.,
New Support Vector Algorithms,
NeurComp(12), 2000, pp. 1207-1245.
BibRef
0001
Cristianini, N.[Nello],
Schölkopf, B.[Bernhard],
Support Vector Machines and Kernel Methods:
The New Generation of Learning Machines,
AIMag(23), No. 3, Fall 2002, pp. 31-41.
Survey, SVM. Survey and general discussion.
BibRef
0200
Kienzle, W.[Wolf],
Bakir, G.H.[Gökhan H.],
Franz, M.O.[Matthias O.],
Schölkopf, B.[Bernhard],
Efficient Approximations for Support Vector Machines in Object
Detection,
DAGM04(54-61).
Springer DOI
0505
BibRef
Cristianini, N.[Nello],
Shawe-Taylor, J.[John],
An Introduction to Support Vector Machines,
Cambridge University Press2000.
Survey, SVM.
WWW Link. ISBN: 0 521 78019 5
Buy this book: An Introduction to Support Vector Machines and Other Kernel-based Learning Methods
BibRef
0001
Chapelle, O.,
Haffner, P.,
Vapnik, V.,
Support Vector Machines for Histogram-Based Image Classification,
TNN(10), No. 5, May 1999, pp. 1055-1064.
BibRef
9905
Morra, J.H.,
Tu, Z.,
Apostolova, L.G.,
Green, A.E.,
Toga, A.W.,
Thompson, P.M.,
Comparison of AdaBoost and Support Vector Machines for Detecting
Alzheimer's Disease Through Automated Hippocampal Segmentation,
MedImg(29), No. 1, January 2010, pp. 30-43.
IEEE DOI
1001
BibRef
Abe, S.[Shigeo],
Support Vector Machines for Pattern Classification,
Springer-Verlag2010.
ISBN: 978-1-84996-097-7
WWW Link.
Survey, Support Vector Machines. Buy this book: Support Vector Machines for Pattern Classification (Advances in Computer Vision and Pattern Recognition)
Overview and analysis of SVM techniques. Design, training.
BibRef
1000
Mountrakis, G.[Giorgos],
Im, J.[Jungho],
Ogole, C.[Caesar],
Support vector machines in remote sensing: A review,
PandRS(66), No. 3, May 2011, pp. 247-259.
Elsevier DOI
1103
Survey, Support Vector Machines. Support vector machines; Review; Remote sensing; SVM; SVMs
BibRef
Heydari, S.S.[Shahriar S.],
Mountrakis, G.[Giorgos],
Meta-analysis of deep neural networks in remote sensing: A
comparative study of mono-temporal classification to support vector
machines,
PandRS(152), 2019, pp. 192-210.
Elsevier DOI
1905
Deep learning, Classification, Convolutional neural network,
Deep belief network, Stacked auto encoder, Support vector machine
BibRef
Löw, F.,
Michel, U.,
Dech, S.,
Conrad, C.,
Impact of feature selection on the accuracy and spatial uncertainty
of per-field crop classification using Support Vector Machines,
PandRS(85), No. 1, 2013, pp. 102-119.
Elsevier DOI
1310
Crop classification
BibRef
Löw, F.[Fabian],
Knöfel, P.[Patrick],
Conrad, C.[Christopher],
Analysis of uncertainty in multi-temporal object-based classification,
PandRS(105), No. 1, 2015, pp. 91-106.
Elsevier DOI
1506
Classification uncertainty
BibRef
Löw, F.[Fabian],
Duveiller, G.[Grégory],
Conrad, C.[Christopher],
Michel, U.[Ulrich],
Impact of Categorical and Spatial Scale on Supervised Crop
Classification using Remote Sensing,
PFG(2015), No. 1, 2015, pp. 7-20.
DOI Link
1503
BibRef
Yang, B.[Bo],
Shao, Q.M.[Quan-Ming],
Pan, L.[Li],
Li, W.B.[Wen-Bin],
A study on regularized Weighted Least Square Support Vector
Classifier,
PRL(108), 2018, pp. 48-55.
Elsevier DOI
1805
Weighted Least Square Support Vector Classifier,
Regularization technique, Robust estimation, Sparse classifier
BibRef
Zhu, X.F.[Xiu-Fang],
Li, N.[Nan],
Pan, Y.Z.[Yao-Zhong],
Optimization Performance Comparison of Three Different Group
Intelligence Algorithms on a SVM for Hyperspectral Imagery
Classification,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Orfanidis, G.[Georgios],
Tefas, A.[Anastasios],
Exploiting subclass information in Support Vector Machines,
ICPR12(1076-1079).
WWW Link.
1302
BibRef
Gavriilidis, V.[Vasileios],
Tefas, A.[Anastasios],
Random Walk Kernel Applications to Classification Using Support
Vector Machines,
ICPR14(3898-3903)
IEEE DOI
1412
Covariance matrices
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Extreme Learning Machine, ELM .