Zhu, Q.Y.[Qin-Yu],
Qin, A.K.,
Suganthan, P.N.,
Huang, G.B.[Guang-Bin],
Evolutionary extreme learning machine,
PR(38), No. 10, October 2005, pp. 1759-1763.
Elsevier DOI
0508
BibRef
Chen, C.[Chen],
Li, W.[Wei],
Su, H.J.[Hong-Jun],
Liu, K.[Kui],
Spectral-Spatial Classification of Hyperspectral Image Based on
Kernel Extreme Learning Machine,
RS(6), No. 6, 2014, pp. 5795-5814.
DOI Link
1407
BibRef
Li, W.[Wei],
Chen, C.[Chen],
Su, H.J.[Hong-Jun],
Du, Q.[Qian],
Local Binary Patterns and Extreme Learning Machine for Hyperspectral
Imagery Classification,
GeoRS(53), No. 7, July 2015, pp. 3681-3693.
IEEE DOI
1503
Educational institutions
BibRef
Li, J.J.[Jiao-Jiao],
Xi, B.B.[Bo-Bo],
Du, Q.[Qian],
Song, R.[Rui],
Li, Y.S.[Yun-Song],
Ren, G.B.[Guang-Bo],
Deep Kernel Extreme-Learning Machine for the Spectral-Spatial
Classification of Hyperspectral Imagery,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Riccardi, A.,
Fernandez-Navarro, F.,
Carloni, S.,
Cost-Sensitive AdaBoost Algorithm for Ordinal Regression Based on
Extreme Learning Machine,
Cyber(44), No. 10, October 2014, pp. 1898-1909.
IEEE DOI
1410
learning (artificial intelligence)
BibRef
Lopes, N.[Noel],
Ribeiro, B.[Bernardete],
Towards adaptive learning with improved convergence of deep belief
networks on graphics processing units,
PR(47), No. 1, 2014, pp. 114-127.
Elsevier DOI
1310
BibRef
And: A2, A2:
Extreme Learning Classifier with Deep Concepts,
CIARP13(I:182-189).
Springer DOI
1311
Deep learning
BibRef
Shen, Y.[Yu],
Zhu, S.J.[Si-Jie],
Chen, C.[Chen],
Du, Q.[Qian],
Xiao, L.[Liang],
Chen, J.Y.[Jian-Yu],
Pan, D.[Delu],
Efficient Deep Learning of Nonlocal Features for Hyperspectral Image
Classification,
GeoRS(59), No. 7, July 2021, pp. 6029-6043.
IEEE DOI
2106
Feature extraction, Data mining, Kernel, Machine learning,
Support vector machines, Neural networks, Computational modeling,
nonlocal module
BibRef
Chen, Z.F.[Zhi-Fei],
Hao, Y.[Yang],
Liu, Q.C.[Qi-Chao],
Liu, Y.[Yuyong],
Zhu, M.Y.[Ming-Yang],
Xiao, L.[Liang],
Deep Learning for Hyperspectral Image Classification: A Critical
Evaluation via Mutation Testing,
RS(16), No. 24, 2024, pp. 4695.
DOI Link
2501
BibRef
Li, Z.K.[Zhao-Kui],
Liu, M.[Ming],
Chen, Y.S.[Yu-Shi],
Xu, Y.M.[Yi-Min],
Li, W.[Wei],
Du, Q.[Qian],
Deep Cross-Domain Few-Shot Learning for Hyperspectral Image
Classification,
GeoRS(60), 2022, pp. 1-18.
IEEE DOI
2112
Training, Task analysis, Feature extraction, Data models,
Deep learning, Hyperspectral imaging, Adaptation models, meta-learning
BibRef
Li, J.J.[Jiao-Jiao],
Zhang, Z.Y.[Zhi-Yuan],
Song, R.[Rui],
Li, Y.S.[Yun-Song],
Du, Q.[Qian],
SCFormer: Spectral Coordinate Transformer for Cross-Domain Few-Shot
Hyperspectral Image Classification,
IP(33), 2024, pp. 840-855.
IEEE DOI
2402
Task analysis, Data models, Correlation, Transformers,
Feature extraction, Convolution, Indexes, Cross-domain,
HSI classification
BibRef
Li, W.[Wei],
Wu, G.D.[Guo-Dong],
Zhang, F.[Fan],
Du, Q.[Qian],
Hyperspectral Image Classification Using Deep Pixel-Pair Features,
GeoRS(55), No. 2, February 2017, pp. 844-853.
IEEE DOI
1702
hyperspectral imaging
BibRef
Ye, Y.B.[Yi-Bin],
Qin, Y.[Yang],
QR factorization based Incremental Extreme Learning Machine with
growth of hidden nodes,
PRL(65), No. 1, 2015, pp. 177-183.
Elsevier DOI
1511
Extreme Learning Machine(ELM)
BibRef
Xu, X.Z.[Xin-Zheng],
Wang, G.Y.[Guan-Ying],
Ding, S.F.[Shi-Fei],
Jiang, X.Y.[Xiang-Ying],
Zhao, Z.P.[Zuo-Peng],
A new method for constructing granular neural networks based on rule
extraction and extreme learning machine,
PRL(67, Part 2), No. 1, 2015, pp. 138-144.
Elsevier DOI
1512
Granular neural networks
BibRef
Shen, Q.[Qing],
Ban, X.J.[Xiao-Juan],
Liu, R.[Ruoyi],
Wang, Y.[Yu],
Decay-weighted extreme learning machine for balance and optimization
learning,
MVA(28), No. 7, October 2017, pp. 743-753.
WWW Link.
1710
BibRef
Zhang, Y.S.[Yong-Shan],
Wu, J.[Jia],
Zhou, C.[Chuan],
Cai, Z.H.[Zhi-Hua],
Instance cloned extreme learning machine,
PR(68), No. 1, 2017, pp. 52-65.
Elsevier DOI
1704
Extreme Learning Machine
BibRef
Cvetkovic, S.[Stevica],
Stojanovic, M.B.[Miloš B.],
Nikolic, S.V.[Saša V.],
Multi-channel descriptors and ensemble of Extreme Learning Machines
for classification of remote sensing images,
SP:IC(39, Part A), No. 1, 2015, pp. 111-120.
Elsevier DOI
1512
Scene classification
BibRef
Quispe, A.M.[Arturo Mendoza],
Petitjean, C.[Caroline],
Heutte, L.[Laurent],
Extreme learning machine for out-of-sample extension in Laplacian
eigenmaps,
PRL(74), No. 1, 2016, pp. 68-73.
Elsevier DOI
1604
Dimensionality reduction
BibRef
Kasun, L.L.C.,
Yang, Y.,
Huang, G.B.,
Zhang, Z.,
Dimension Reduction With Extreme Learning Machine,
IP(25), No. 8, August 2016, pp. 3906-3918.
IEEE DOI
1608
Additives
BibRef
Zhang, L.,
Zhang, D.,
Robust Visual Knowledge Transfer via Extreme Learning Machine-Based
Domain Adaptation,
IP(25), No. 10, October 2016, pp. 4959-4973.
IEEE DOI
1610
image classification
BibRef
Zhang, Y.S.[Yong-Shan],
Wu, J.[Jia],
Cai, Z.H.[Zhi-Hua],
Zhang, P.[Peng],
Chen, L.[Ling],
Memetic Extreme Learning Machine,
PR(58), No. 1, 2016, pp. 135-148.
Elsevier DOI
1606
Extreme Learning Machine
BibRef
Chen, B.D.[Ba-Dong],
Wang, X.[Xin],
Lu, N.[Na],
Wang, S.Y.[Shi-Yuan],
Cao, J.W.[Jiu-Wen],
Qin, J.[Jing],
Mixture correntropy for robust learning,
PR(79), 2018, pp. 318-327.
Elsevier DOI
1804
Correntropy, Mixture correntropy, Robust learning,
Extreme learning machine, Kernel adaptive filtering
BibRef
Haut, J.M.[Juan Mario],
Paoletti, M.E.[Mercedes Eugenia],
Plaza, J.[Javier],
Plaza, A.[Antonio],
Fast dimensionality reduction and classification of hyperspectral
images with extreme learning machines,
RealTimeIP(14), No. 3, October 2018, pp. 439-462.
Springer DOI
1811
BibRef
Li, R.[Rui],
Wang, X.D.[Xiao-Dan],
Lei, L.[Lei],
Wu, C.M.[Chong-Ming],
Representation learning by hierarchical ELM auto-encoder with double
random hidden layers,
IET-CV(13), No. 4, June 2019, pp. 411-419.
DOI Link
1906
ELM: Extreme Learning Machine.
BibRef
Chen, L.J.[Liang-Jun],
Honeine, P.[Paul],
Hua, Q.[Qu],
Zhao, J.H.[Ji-Hong],
Xia, S.[Sun],
Correntropy-based robust multilayer extreme learning machines,
PR(84), 2018, pp. 357-370.
Elsevier DOI
1809
Deep learning, Extreme learning machine, Correntropy,
Unsupervised feature learning, Computer aided cancer diagnosis
BibRef
Cai, Y.M.[Yao-Ming],
Liu, X.B.[Xiao-Bo],
Zhang, Y.S.[Yong-Shan],
Cai, Z.H.[Zhi-Hua],
Hierarchical ensemble of Extreme Learning Machine,
PRL(116), 2018, pp. 101-106.
Elsevier DOI
1812
Extreme Learning Machine, Ensemble learning, Representation learning
BibRef
Pradhan, M.K.[Monoj K.],
Minz, S.[Sonajharia],
Shrivastava, V.K.[Vimal K.],
Fast active learning for hyperspectral image classification using
extreme learning machine,
IET-IPR(13), No. 4, March 2019, pp. 549-555.
DOI Link
1903
BibRef
Cao, F.,
Yang, Z.,
Ren, J.,
Chen, W.,
Han, G.,
Shen, Y.,
Local Block Multilayer Sparse Extreme Learning Machine for Effective
Feature Extraction and Classification of Hyperspectral Images,
GeoRS(57), No. 8, August 2019, pp. 5580-5594.
IEEE DOI
1908
feature extraction, feedforward neural nets,
geophysical image processing, hyperspectral imaging,
loopy belief propagation (LBP)
BibRef
Zhang, W.Y.[Wen-Yu],
Zhang, Z.J.[Zhen-Jiang],
Wang, L.[Lifu],
Chao, H.C.[Han-Chieh],
Zhou, Z.B.[Zhang-Bing],
Extreme learning machines with expectation kernels,
PR(96), 2019, pp. 106960.
Elsevier DOI
1909
Bounded random feature mapping, Expectation kernel,
Extreme learning machine, Kernel learning, Random sampling
BibRef
Zhang, Y.S.[Yong-Shan],
Jiang, X.W.[Xin-Wei],
Wang, X.X.[Xin-Xin],
Cai, Z.H.[Zhi-Hua],
Spectral-Spatial Hyperspectral Image Classification with Superpixel
Pattern and Extreme Learning Machine,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Pashaei, A.[Ali],
Ghatee, M.[Mehdi],
Sajedi, H.[Hedieh],
Convolution neural network joint with mixture of extreme learning
machines for feature extraction and classification of accident images,
RealTimeIP(17), No. 4, August 2020, pp. 1051-1066.
WWW Link.
2007
BibRef
Wang, Z.X.[Zhao-Xi],
Chen, S.Y.[Sheng-Yong],
Guo, R.W.[Rong-Wei],
Li, B.[Bin],
Feng, Y.B.[Yang-Bo],
Extreme learning machine with feature mapping of kernel function,
IET-IPR(14), No. 11, September 2020, pp. 2495-2502.
DOI Link
2009
BibRef
Raghuwanshi, B.S.[Bhagat Singh],
Shukla, S.[Sanyam],
Minimum variance-embedded kernelized extension of extreme learning
machine for imbalance learning,
PR(119), 2021, pp. 108069.
Elsevier DOI
2106
Extreme learning machine,
Minimum variance-embedded class-specific kernelized extreme learning machine,
Classification
BibRef
Yu, X.[Xumin],
Feng, Y.[Yan],
Gao, Y.L.[Yan-Long],
Jia, Y.B.[Ying-Biao],
Mei, S.H.[Shao-Hui],
Dual-Weighted Kernel Extreme Learning Machine for Hyperspectral
Imagery Classification,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Wu, C.[Chao],
Li, Y.Q.[Ya-Qian],
Zhang, Y.[Yaru],
Liu, B.[Bin],
Double constrained bag of words for human action recognition,
SP:IC(98), 2021, pp. 116399.
Elsevier DOI
2109
Human action recognition, Bag of words (boW), Feature encoding,
Extreme learning machine (ELM)
BibRef
He, Y.L.[Yu-Lin],
Xu, S.S.[Sheng-Sheng],
Huang, J.Z.[Joshua Zhexue],
Creating synthetic minority class samples based on autoencoder
extreme learning machine,
PR(121), 2022, pp. 108191.
Elsevier DOI
2109
Imbalanced classification, Minority class, Majority class,
Synthetic samples creation, SMOTE
BibRef
Han, T.[Te],
Tang, Y.Q.[Yu-Qi],
Yang, X.[Xin],
Lin, Z.F.[Ze-Feng],
Zou, B.[Bin],
Feng, H.H.[Hui-Hui],
Change Detection for Heterogeneous Remote Sensing Images with
Improved Training of Hierarchical Extreme Learning Machine (HELM),
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Wang, S.S.[Shan-Shan],
Liu, Z.[Zheng],
Xie, R.[Rong],
Ran, L.[Lei],
Online Sequential Extreme Learning Machine-Based Active Interference
Activity Prediction for Cognitive Radar,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhang, H.S.[Hui-Sheng],
Wang, Z.Q.[Zai-Qiang],
Chen, D.[Dehao],
Zhu, S.[Shuai],
Xu, D.[Dongpo],
Quaternion Extreme Learning Machine Based on Real Augmented
Representation,
SPLetters(30), 2023, pp. 175-179.
IEEE DOI
2303
Quaternions, Signal processing algorithms,
Computational modeling, Training, Mathematical models,
widely linear estimation
BibRef
Yang, S.H.[Shu-Han],
Tian, S.[Shufang],
Extraction of Alteration Information from Hyperspectral Data Base on
Kernel Extreme Learning Machine,
RS(16), No. 19, 2024, pp. 3646.
DOI Link
2410
BibRef
Zhang, H.R.[Hong-Rui],
Lv, H.F.[Hong-Fei],
Wang, M.K.[Meng-Ke],
Wang, L.Y.[Lu-Yao],
Xu, J.H.[Jin-Huan],
Wang, F.G.[Feng-Gui],
Li, X.D.[Xiang-Dong],
Unsupervised hyperspectral images classification using hypergraph
convolutional extreme learning machines,
IET-IPR(18), No. 9, 2024, pp. 2389-2399.
DOI Link
2407
hyperspectral imaging, image classification, unsupervised learning
BibRef
Alcacer, A.[Aleix],
Epifanio, I.[Irene],
Gual-Arnau, X.[Ximo],
Biarchetype Analysis: Simultaneous Learning of Observations and
Features Based on Extremes,
PAMI(46), No. 12, December 2024, pp. 8228-8239.
IEEE DOI
2411
Prototypes, Gene expression, Elbow, Sports, Sociology, Proposals, Data analysis,
Archetype analysis, biclustering, prototype, unsupervised learning
BibRef
Verma, Y.[Yashaswi],
Surprising Effectiveness of Random Feature Embeddings in eXtreme
Classification,
ICPR22(1836-1842)
IEEE DOI
2212
Training, Vocabulary, Codes, XML, Benchmark testing,
Reproducibility of results
BibRef
Rodriguez, P.[Paul],
Random Generated Dictionaries for Convolutional Sparse Coding:
An ELM Interpretation for Simple CSC Applications,
ICIP22(126-130)
IEEE DOI
2211
Convolutional codes, Training, Dictionaries, Image coding,
Extreme learning machines, Noise reduction, Superresolution
BibRef
Mittal, A.[Anshul],
Dahiya, K.[Kunal],
Malani, S.[Shreya],
Ramaswamy, J.[Janani],
Kuruvilla, S.[Seba],
Ajmera, J.[Jitendra],
Chang, K.H.[Keng-Hao],
Agarwal, S.[Sumeet],
Kar, P.[Purushottam],
Varma, M.[Manik],
Multi-modal Extreme Classification,
CVPR22(12383-12392)
IEEE DOI
2210
Training, Representation learning, Bridges, Visualization,
Search engines,
BibRef
Xu, J.H.[Jin-Huan],
Liu, P.F.[Peng-Fei],
Sun, L.[Le],
Xiao, L.[Liang],
Discriminative Pixel-Pairwise Constraint-Guided Extreme Learning
Machine for Semi-Supervised Hyperspectral Image Classification,
ICIP18(1518-1522)
IEEE DOI
1809
Hyperspectral imaging, Support vector machines, Manifolds,
Laplace equations, Computational modeling, Linear programming,
extreme learning machine (ELM)
BibRef
Li, Z.Z.[Zhuang-Zi],
Zhu, X.B.[Xiao-Bin],
Wang, L.[Lei],
Guo, P.Y.[Pei-Yu],
Image Classification Using Convolutional Neural Networks and Kernel
Extreme Learning Machines,
ICIP18(3009-3013)
IEEE DOI
1809
Feature extraction, Training, Kernel, Task analysis,
Convolutional neural networks, Support vector machines,
BibRef
Cui, D.S.[Dong-Shun],
Zhang, G.H.[Guang-Hao],
Han, W.[Wei],
Compact Feature Representation for Image Classification Using ELMs,
CEFR-LCV17(1015-1022)
IEEE DOI
1802
Extreme Learning Machine. Shallow network.
Convolution, Feature extraction,
Noise measurement, Principal component analysis, Support vector machines
BibRef
Lekamalage, C.K.L.,
Song, K.,
Huang, G.B.,
Cui, D.,
Liang, K.,
Multi layer multi objective extreme learning machine,
ICIP17(1297-1301)
IEEE DOI
1803
Linear programming, Multi-layer neural network, Neurons,
Optical character recognition software, Task analysis, Testing,
image classification
BibRef
Cui, D.,
Huang, G.B.,
Kasun, L.L.C.,
Zhang, G.,
Han, W.,
Elmnet: Feature learning using extreme learning machines,
ICIP17(1857-1861)
IEEE DOI
1803
Convolution, Histograms, Noise measurement,
Principal component analysis, Task analysis, Training, ELM-AE,
Feature Learning
BibRef
Guo, L.,
Liew, A.W.C.[Alan Wee-Chung],
An Improved Extreme Learning Machine with Parallelized Feature
Mapping Structures,
DICTA16(1-5)
IEEE DOI
1701
Diabetes
BibRef
Tang, J.X.[Jie-Xiong],
Deng, C.W.[Chen-Wei],
Huang, G.B.[Guang-Bin],
Hou, J.H.[Jun-Hui],
A fast learning algorithm for multi-layer extreme learning machine,
ICIP14(175-178)
IEEE DOI
1502
Accuracy
BibRef
Liu, Y.[Yu],
Xu, X.J.[Xiu-Juan],
Wang, C.Y.[Chun-Yu],
Simple Ensemble of Extreme Learning Machine,
CISP09(1-5).
IEEE DOI
0910
BibRef
Cao, L.L.[Le-Le],
Huang, W.B.[Wen-Bing],
Sun, F.C.[Fu-Chun],
Optimization-Based Extreme Learning Machine with Multi-kernel
Learning Approach for Classification,
ICPR14(3564-3569)
IEEE DOI
1412
Kernel
BibRef
Shao, Z.F.[Zhi-Fei],
Er, M.J.[Meng Joo],
Huang, G.B.[Guang-Bin],
Receding Horizon Cache and Extreme Learning Machine based Reinforcement
Learning,
ICARCV12(1591-1596).
IEEE DOI
1304
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Robust Techniques, Robust Classification .