Stephanou, H.E., and
Lu, S.Y.,
Measuring Consensus Effectiveness by a Generalized Entropy Criterion,
PAMI(10), No. 4, July 1988, pp. 544-554.
IEEE DOI
BibRef
8807
Ho, T.K.,
Hull, J.J.,
Srihari, S.N.,
Decision Combination in Multiple Classifier Systems,
PAMI(16), No. 1, January 1994, pp. 66-75.
IEEE DOI
BibRef
9401
Earlier:
On multiple classifier systems for pattern recognition,
ICPR92(II:84-87).
IEEE DOI
9208
The Borda count.
Unanimous consensus for selection.
BibRef
Dasarathy, B.V.,
Fusion Strategies for Enhancing Decision Reliability in
Multisensor Environments,
OptEng(35), No. 3, March 1996, pp. 603-616.
BibRef
9603
Dasarathy, B.V.,
Sensor Fusion Potential Exploitation:
Innovative Architectures and Illustrative Applications,
PIEEE(85), No. 1, January 1997, pp. 24-38.
9701
BibRef
Dasarathy, B.V.,
Adaptive Fusion Processor Paradigms for Fusion
of Information Acquired at Different Levels of Detail,
OptEng(35), No. 3, March 1996, pp. 634-649.
BibRef
9603
Dasarathy, B.V.,
Asymmetric Fusion strategies for target detection in multisensor
environments,
SPIE(3067), April 1997, pp. 26-37.
BibRef
9704
Dasarathy, B.V.,
Decision Fusion,
ISBN 0-8186-4452-4,
IEEE
Computer Society PressLos Alamitos, CA, 1994.
BibRef
9400
Dasarathy, B.V.,
Decision Fusion Strategies for Target Detection
with a Three-Sensor Suite,
SPIE(3067), April 1997, pp. 14-25.
BibRef
9704
Rao, N.S.V.,
Iyengar, S.S.,
Distributed Decision Fusion under Unknown Distributions,
OptEng(35), No. 3, March 1996, pp. 617-624.
BibRef
9603
Dasarathy, B.V.,
Decision Fusion Strategies in Multi-sensor Environments,
SMC(21), No. 5, September/October 1991, pp. 1140-1154.
BibRef
9109
And:
Paradigms for Information Processing in Multisensor Environments,
SPIE(1306), Sensor Fusion III, April 1990, pp. 69-80.
BibRef
Dasarathy, B.V.,
Recursive Strategies for Decision Fusion in
Imperfect Multisensor Environments: I Fusion Benefits,
SPIE(2233), Sensor Fusion and Aerospace Applications II, June 1994,
pp. 21-32.
BibRef
9406
And:
Recursive Strategies for Decision Fusion in
Imperfect Multisensor Environments: II Relative Assessments,
SPIE(2233), pp. 33-44
BibRef
Dasarathy, B.V.,
Operationally Efficient Architectures for Fusion of
Binary Decision Sensors in Multidecision Environments,
OptEng(36), No. 3, March 1997, pp. 632-641.
9704
BibRef
Al-Ghoneim, K.[Khaled],
Kumar, B.V.K.V.[B.V.K. Vijaya],
Unified decision combination framework,
PR(31), No. 12, December 1998, pp. 2077-2089.
Elsevier DOI
BibRef
9812
Rahman, A.F.R.,
Fairhurst, M.C.,
Lee, P.,
Design Considerations in the Real-Time Implementation of Multiple
Expert Image Classifiers within a Modular and Flexible Multiple-platform
Design Environment,
RealTimeImg(4), No. 5, October 1998, pp. 361-376.
See also New Hybrid Approach in Combining Multiple Experts to Recognize Handwritten Numerals, A.
See also Generalized-Approach to the Recognition of Structurally Similar Handwritten Characters Using Multiple Expert Classifiers.
BibRef
9810
Rahman, A.F.R.,
Alam, H.,
Fairhurst, M.C.,
Multiple Classifier Combination for Character Recognition:
Revisiting the Majority Voting System and Its Variations,
DAS02(167 ff.).
Springer DOI
0303
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
Hoque, S.,
Novel approaches to optimized self-configuration in high performance
multiple-expert classifiers,
FHR02(189-194).
IEEE Top Reference.
0209
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
Multiple Expert Classification:
A New Methodology for Parallel Decision Fusion,
IJDAR(3), No. 1, 2000, pp. 40-55.
0008
BibRef
Rahman, A.F.R.[Ahmad F.R.],
Fairhurst, M.C.[Michael C.],
Decision Combination of Multiple Classifiers for Pattern Classification:
Hybridisation of Majority Voting and Divide and Conquer Techniques,
WACV00(58-63).
IEEE DOI
0010
Trying to get the last percent out of classifiers. Select the ones the
can be confused for specific classifiers, the ones that work well with
standard techniques are done quickly.
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
Comparison of Some Multiple Expert Strategies: An Investigation of
Resource Prerequisites and Achievable Performance,
ICPR00(Vol IV: 841-844).
IEEE DOI
0009
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
Enhancing multiple expert decision combination strategies through
exploitation of a priori information sources,
VISP(146), No. 1, February 1999, pp. 40.
BibRef
9902
Fairhurst, M.C.,
Rahman, A.F.R.,
Enhancing consensus in multiple expert decision fusion,
VISP(147), No. 1, February 2000, pp. 39.
0005
BibRef
Rahman, A.F.R.,
Fairhurst, M.C.,
A Novel Confidence-based Framework for Multiple Expert Decision Fusion,
BMVC98(xx-yy).
BibRef
9800
Rahman, A.F.R.,
Fairhurst, M.C.,
Multiple classifier decision combination strategies for character
recognition: A review,
IJDAR(5), No. 4, July 2003, pp. 166-194.
Springer DOI
0308
BibRef
Jeon, B.,
Landgrebe, D.A.,
Decision Fusion Approach for Multitemporal Classification,
GeoRS(37), No. 3, May 1999, pp. 1227.
IEEE Top Reference.
BibRef
9905
Gunatilaka, A.H.[Ajith H.],
Baertlein, B.A.[Brian A.],
Feature-Level and Decision-Level Fusion of Noncoincidently Sampled
Sensors for Land Mine Detection,
PAMI(23), No. 6, June 2001, pp. 577-589.
IEEE DOI
0106
Compare fusion at feature level and fusion at decision levle.
Fusion of binary decisions (but not the case when detection confidence
levels are available) does not perform better than the best
sensor. Feature level fusion is better than the individual sensors.
BibRef
Dasigi, V.[Venu],
Mann, R.C.[Reinhold C.],
Protopopescu, V.A.[Vladimir A.],
Information fusion for text classification an experimental comparison,
PR(34), No. 12, December 2001, pp. 2413-2425.
Elsevier DOI
0110
BibRef
Earlier:
Multi-sensor text classification experiments: A comparison,
TROak Ridge National Laboratory Technical Memorandum ORNL/TM-13354, Oak Ridge, TN 37831, January, 1997.
Neural Nets.
BibRef
Nishii, R.,
A markov random field-based approach to decision-level fusion for
remote sensing image classification,
GeoRS(41), No. 10, October 2003, pp. 2316-2319.
IEEE Abstract.
0310
BibRef
Su, Y.,
Huang, P.S.,
Lin, C.F.,
Tu, T.M.,
Target-cluster fusion approach for classifying high resolution IKONOS
imagery,
VISP(151), No. 4, August 2004, pp. 241-249.
IEEE Abstract.
0411
Within-class variability is higher for higher resolutions.
BibRef
Chen, H.,
Meer, P.,
Robust Fusion of Uncertain Information,
SMC-B(35), No. 3, June 2005, pp. 578-586.
IEEE DOI
0508
BibRef
Narasimhamurthy, A.[Anand],
Theoretical Bounds of Majority Voting Performance for a Binary
Classification Problem,
PAMI(27), No. 12, December 2005, pp. 1988-1995.
IEEE DOI
0512
BibRef
Earlier:
A Framework for the Analysis of Majority Voting,
SCIA03(268-274).
Springer DOI
0310
Formulate as optimization problem with linear constraints without assuming
independence of classifiers.
BibRef
Ciuonzo, D.,
Rossi, P.S.[P. Salvo],
Decision Fusion With Unknown Sensor Detection Probability,
SPLetters(21), No. 2, February 2014, pp. 208-212.
IEEE DOI
1402
probability
BibRef
Ciuonzo, D.,
de Maio, A.,
Rossi, P.S.,
A Systematic Framework for Composite Hypothesis Testing of
Independent Bernoulli Trials,
SPLetters(22), No. 9, September 2015, pp. 1249-1253.
IEEE DOI
1503
probability
BibRef
Faria, F.A.[Fabio A.],
dos Santos, J.A.[Jefersson A.],
Rocha, A.[Anderson],
da Silva Torres, R.[Ricardo],
A framework for selection and fusion of pattern classifiers in
multimedia recognition,
PRL(39), No. 1, 2014, pp. 52-64.
Elsevier DOI
1402
Meta-learning
BibRef
Scheirer, W.J.[Walter J.],
Wilber, M.J.[Michael J.],
Eckmann, M.[Michael],
Boult, T.E.[Terrance E.],
Good recognition is non-metric,
PR(47), No. 8, 2014, pp. 2721-2731.
Elsevier DOI
1405
Machine learning
BibRef
Wilber, M.J.[Michael J.],
Rudd, E.M.[Ethan M.],
Heflin, B.[Brian],
Lui, Y.M.[Yui-Man],
Boult, T.E.[Terrance E.],
Exemplar codes for facial attributes and tattoo recognition,
WACV14(205-212)
IEEE DOI
1406
Accuracy
BibRef
Scheirer, W.J.[Walter J.],
Kumar, N.[Neeraj],
Belhumeur, P.N.[Peter N.],
Boult, T.E.[Terrance E.],
Multi-attribute spaces:
Calibration for attribute fusion and similarity search,
CVPR12(2933-2940).
IEEE DOI
1208
fusing multiple attribute scores.
BibRef
Wimalajeewa, T.[Thakshila],
Varshney, P.K.[Pramod K.],
Asymptotic Performance of Categorical Decision Making with Random
Thresholds,
SPLetters(21), No. 8, August 2014, pp. 994-997.
IEEE DOI
1406
Collaboration
BibRef
Ozdemir, O.[Onur],
Allen, T.G.[Thomas G.],
Choi, S.[Sora],
Wimalajeewa, T.[Thakshila],
Varshney, P.K.[Pramod K.],
Copula Based Classifier Fusion Under Statistical Dependence,
PAMI(40), No. 11, November 2018, pp. 2740-2748.
IEEE DOI
1810
Probability, Training data, Data models,
Sensor fusion, Probability density function, Copulas,
statistical dependence
BibRef
Mansano, A.F.[Alex Fernandes],
Matsuoka, J.A.[Jessica Akemi],
Abiuzzi, N.M.[Nikolas Mota],
Afonso, L.C.S.[Luis Claudio Sugi],
Papa, J.P.[Joao Paulo],
Faria, F.A.[Fábio A.],
Torres, R.S.[Ricardo Silva],
Falcao, A.X.[Alexandre Xavier],
Swarm-based Descriptor Combination and its Application for Image
Classification,
ELCVIA(13), No. 3, 2014, pp. xx-yy.
DOI Link
1505
descriptor combination problem in image classification.
Combine unrelated descriptors.
BibRef
Yamami, A.E.,
Mansouri, K.,
Qbadou, M.,
Illousamen, E.H.,
Multi-criteria decision making approach for ITIL processes
performance evaluation: Application to a Moroccan SME,
ISCV17(1-6)
IEEE DOI
1710
Analytic hierarchy process, Indexes,
Matrix decomposition, Performance evaluation,
BibRef
Rahaman, M.F.,
Khan, M.Z.A.,
Low-Complexity Optimal Hard Decision Fusion Under the Neyman-Pearson
Criterion,
SPLetters(25), No. 3, March 2018, pp. 353-357.
IEEE DOI
1802
Bayes methods, Cognitive radio,
Complexity theory, Mathematical model, Optimization,
multithreshold
BibRef
Tuia, D.,
Volpi, M.,
Moser, G.,
Decision Fusion With Multiple Spatial Supports by Conditional Random
Fields,
GeoRS(56), No. 6, June 2018, pp. 3277-3289.
IEEE DOI
1806
Convolutional neural networks, Labeling, Lattices, Remote sensing,
Semantics, Standards, Task analysis, Classification,
semantic labeling
BibRef
Dong, X.Y.[Xuan-Yi],
Yan, Y.[Yan],
Tan, M.K.[Ming-Kui],
Yang, Y.[Yi],
Tsang, I.W.[Ivor W.],
Late Fusion via Subspace Search With Consistency Preservation,
IP(28), No. 1, January 2019, pp. 518-528.
IEEE DOI
1810
Optimization, Robustness, Feature extraction, Manifolds, Testing,
Prediction algorithms, Matrix converters, Late fusion,
classification
BibRef
Khan, Z.[Zubair],
Kumar, S.[Shishir],
Reyes, E.B.G.[Edel B. García],
Mahanti, P.[Prabhat],
Multimodal fusion for pattern recognition,
PRL(115), 2018, pp. 1-3.
Elsevier DOI
1812
BibRef
Guo, B.F.[Bao-Feng],
Entropy-Mediated Decision Fusion for Remotely Sensed Image
Classification,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Shen, J.[Junge],
Zhang, C.[Chi],
Zheng, Y.[Yu],
Wang, R.X.[Ru-Xin],
Decision-Level Fusion with a Pluginable Importance Factor Generator
for Remote Sensing Image Scene Classification,
RS(13), No. 18, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Shi, C.[Cheng],
Dang, Y.[Yenan],
Fang, L.[Li],
Lv, Z.Y.[Zhi-Yong],
Shen, H.F.[Hui-Fang],
Attention-Guided Multispectral and Panchromatic Image Classification,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
For learning with multi sensor data.
BibRef
Constantin, M.G.[Mihai Gabriel],
Stefan, L.D.[Liviu-Daniel],
Ionescu, B.[Bogdan],
Deepfusion: Deep Ensembles for Domain Independent System Fusion,
MMMod21(I:240-252).
Springer DOI
2106
BibRef
Asmae, A.,
Hussain, B.A.,
Souhail, S.,
Moukhtar, Z.E.,
A fuzzy ontology-based support for multi-criteria decision-making in
collaborative product development,
ISCV17(1-6)
IEEE DOI
1710
Collaboration, Decision making, Interoperability,
Mathematical model, Ontologies, Pragmatics, Semantics,
Collaborative product developpment,
BibRef
Li, P.,
Song, B.,
Land Cover Classification of Multi-sensor Images by Decision Fusion
Using Weights of Evidence Model,
ISPRS12(XXXIX-B7:213-216).
DOI Link
1209
BibRef
Wang, B.[Bo],
Jiang, J.Y.[Jia-Yan],
Wang, W.[Wei],
Zhou, Z.H.[Zhi-Hua],
Tu, Z.W.[Zhuo-Wen],
Unsupervised metric fusion by cross diffusion,
CVPR12(2997-3004).
IEEE DOI
1208
BibRef
López Gutiérrez, L.[Luis],
Altamirano Robles, L.[Leopoldo],
Decision Fusion for Target Detection Using Multi-spectral Image
Sequences from Moving Cameras,
IbPRIA05(II:720).
Springer DOI
0509
BibRef
Gao, Y.S.[Yong-Sheng],
Maggs, M.[Michael],
Feature-Level Fusion in Personal Identification,
CVPR05(I: 468-473).
IEEE DOI
0507
BibRef
Sun, Z.H.[Zhao-Hui],
Adaptation for multiple cue integration,
CVPR03(I: 440-445).
IEEE DOI
0307
Integrate multiple graphs from various cues to a single graph.
BibRef
Paletta, L.[Lucas],
Paar, G.[Gerhard],
Information Selection and Probabilistic 2D:
3D Integration in Mobile Mapping,
CVS03(151 ff).
Springer DOI
0306
BibRef
Soh, J.[Jung],
Combination of Decisions by Multiple Document Object Locators,
VI02(198).
PDF File.
0208
BibRef
Hong, P.Y.[Peng-Yu],
Huang, T.S.,
Multimodal temporal pattern mining,
ICPR02(III: 465-468).
IEEE DOI
0211
BibRef
Hong, P.Y.[Peng-Yu],
Wang, R.[Roy],
Huang, T.S.[Thomas S.],
Learning Patterns from Images by Combining Soft Decisions and Hard
Decisions,
CVPR00(I: 78-83).
IEEE DOI
0005
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
King Sun Fu Pattern Recognition Papers .