Goodrich, G.W.[George W.],
Collision avoidance using optical pattern growth rate,
US_Patent4,257,703, 03/24/1981.
HTML Version. Basically looming.
BibRef
8103
Sawhney, H.S., and
Hanson, A.R.,
Trackability as a Cue for
Potential Obstacle Identification and 3-D Description,
IJCV(11), No. 3, December 1993, pp. 237-265.
Springer DOI
BibRef
9312
And:
UMass-TR-92-15, February 1992.
BibRef
Earlier:
Affine Trackability Aids Obstacle Detection,
CVPR92(418-424).
IEEE DOI
BibRef
And:
Tracking, Detection and 3D Representation of Potential Obstacles Using
Affine Constraints,
DARPA92(1009-1017).
BibRef
Earlier:
Identification and 3D Description of 'Shallow'
Environmental Structure in a Sequence of Images,
CVPR91(179-185).
IEEE DOI Shallow objects (mostly flat in depth), 3-D reconstructions and
segmentation of the objects.
BibRef
Sawhney, H.S.,
Simplifying Motion and Structure Analysis Using
Planar Parallax and Image Warping,
ICPR94(A:403-408).
IEEE DOI
BibRef
9400
And:
3D Geometry from Planar Parallax,
CVPR94(929-934).
IEEE DOI
BibRef
Kumar, R.,
Sawhney, H.S., and
Hanson, A.R.,
3D Model Acquisition from Monocular Image Sequences,
CVPR92(209-215).
IEEE DOI
BibRef
9200
And:
UMassCS-TR-93-5, January 1993.
Extending the shallow structure work with refinement of the structure.
BibRef
Sawhney, H.S.,
Kumar, R., and
Hanson, A.R.,
Riseman, E.M.,
Landmark-Based Navigation-Model Extension and Refinement,
UMass-CS-TR-93-6, January 1993.
See also Landmark-Based Navigation and the Acquisition of Environmental Models.
BibRef
9301
And:
Model Extension and Refinement Using Landmarks,
DARPA93(507-514).
BibRef
Kumar, R.,
Model Dependent Inference of 3D Information from a Sequence of
2D Images,
COINS- TR-92-04, 1992,
BibRef
9200
Ph.D.
BibRef
Ringach, D.L., and
Baram, Y.,
A Diffusion Mechanism for Obstacle Detection from
Size-Change Information,
PAMI(16), No. 1, January 1994, pp. 76-80.
IEEE DOI Obstacles are indicated by the size change effects.
BibRef
9401
Meyer, F.G.,
Time-to-Collision from First-Order Models of the Motion Field,
RA(10), 1994, pp. 792-798.
BibRef
9400
Meyer, F.,
Bouthemy, P.,
Estimation of Time-to-Collision Maps from First Order Motion
Models and Normal Flows,
ICPR92(I:78-82).
IEEE DOI
BibRef
9200
Ancona, N.[Nicola],
Poggio, T.[Tomaso],
Optical Flow from 1-D Correlation:
Application to a Simple Time-to-Crash Detector,
IJCV(14), No. 2, March 1995, pp. 131-146.
Springer DOI
BibRef
9503
Earlier:
ICCV93(209-214).
IEEE DOI
BibRef
And:
MIT AI Memo-1375, October 1993.
WWW Link.
BibRef
And:
Add A2
Horn, B.K.P.,
DARPA93(673-682).
Computations only in 1-D.
BibRef
Ancona, N.,
A Fast Obstacle Detection Method Based on Optical Flow,
ECCV92(267-271).
Springer DOI
BibRef
9200
Hatsopoulos, N.,
Gabbiani, F., and
Laurent, G.,
Elementary Computation of Object Approach by a Wide-Field Visual Neuron,
Science(270), November 10, 1995, pp. 1000-1003.
Has the standard references to biological issues in optical flow and
related topics.
Not computer vision, but in a locust, a neuron's response is described by
multiplying the velocity of the image edge with an exponential function
of the size of the object's image on the retina. The product peaks before
impact, thus the locust can anticipate collision.
BibRef
9511
Burlina, P.[Philippe], and
Chellappa, R.[Rama],
Analyzing Looming Motion Components from Their
Spatiotemporal Spectral Signature,
PAMI(18), No. 10, October 1996, pp. 1029-1033.
IEEE DOI
9611
Time to Collision.
BibRef
Earlier:
Spectral and Temporal Representations of Looming and
Maneuvering Information,
ARPA94(II:1199-1207).
BibRef
And:
Spatio-temporal moments and generalized spectral analysis of divergent
images for motion estimation,
ICIP94(I: 328-332).
IEEE DOI
9411
BibRef
And:
Time-to-X: Analysis of Motion through Temporal Parameters,
CVPR94(461-468).
IEEE DOI
BibRef
And:
Virtually Observable Temporal Kinematic Descriptors
for Polynomial Translations,
DraftTracking vehicle motions (i.e. limited motions).
BibRef
Santos-Victor, J.,
Sandini, G.,
Uncalibrated Obstacle Detection Using Normal Flow,
MVA(9), No. 3, 1996, pp. 130-137.
Springer DOI
9611
BibRef
Borenstein, J.,
Koren, Y.,
The Vector Field Histogram: Fast Obstacle Avoidance for Mobile Robots,
RA(7), 1991, pp. 278-288.
BibRef
9100
Borenstein, J.,
Koren, Y.,
Histogramic In-Motion Mapping for Mobile Robot Obstacle Avoidance,
RA(7), 1991, pp. 535-539.
BibRef
9100
Young, G.S.,
Herman, M.,
Hong, T.H.,
Jiang, D.,
Yang, J.C.S.,
New Visual Invariants for Terrain Navigation without 3D Reconstruction,
IJCV(28), No. 1, June 1998, pp. 45-71.
DOI Link
9807
BibRef
Young, G.S.,
Hong, T.H.,
Herman, M.,
Yang, J.C.S.,
New Visual Invariants for Obstacle Detection Using Optical Flow
Induced from General Motion,
WACV92(100-109).
IEEE DOI
BibRef
9200
Vemuri, B.C.,
Chen, L.,
Vu-Quoc, L.,
Zhang, X.,
Walton, O.,
Efficient and Accurate Collision Detection for Granular Flow Simulation,
GMIP(60), No. 6, November 1998, pp. 403-422.
BibRef
9811
Yamaguchi, H.[Hideaki],
Kasano, A.[Akira],
Method and apparatus for detecting an approaching
object within a monitoring zone,
US_Patent5,798,787, Aug 25, 1998
WWW Link.
BibRef
9808
Weisser, H.[Hubert],
Method for measuring visibility from a moving vehicle,
US_Patent5,987,152, Nov 16, 1999
WWW Link.
BibRef
9911
Raviv, D.[Daniel],
Joarder, K.[Kunal],
The Visual Looming Navigation Cue: A Unified Approach,
CVIU(79), No. 3, September 2000, pp. 331-363.
0008
DOI Link
BibRef
Earlier: A2, A1:
A Novel Method to Calculate Looming Cue for Threat of Collision,
SCV95(341-346).
IEEE DOI
BibRef
And: A2, A1:
A New Method to Calculate Looming for Autonomous Obstacle Avoidance,
CVPR94(777-780).
IEEE DOI Florida Atlantic University.
Relative change in irradiance in the image to get the change in
relative size.
Study texture and change around the fixated point.
BibRef
Galbraith, J.M.,
Kenyon, G.T.,
Ziolkowski, R.W.,
Time-to-Collision Estimation from Motion Based on Primate Visual
Processing,
PAMI(27), No. 8, August 2005, pp. 1279-1291.
IEEE Abstract.
0506
Extract velocity features, similar to, but different from, optical flow.
BibRef
Stein, G.P.[Gideon P.],
System and method for detecting obstacles to vehicle motion and
determining time to contact therewith using sequences of images,
US_Patent7,113,867, Sep 26, 2006
WWW Link.
BibRef
0609
Stein, G.P.[Gideon P.],
System and method for generating a model of the path of
a roadway from an image recorded by a camera,
US_Patent7,151,996, Dec 19, 2006
WWW Link.
BibRef
0612
Chessa, M.[Manuela],
Solari, F.[Fabio],
Sabatini, S.P.[Silvio P.],
Adjustable linear models for optic flow based obstacle avoidance,
CVIU(117), No. 6, June 2013, pp. 603-619.
Elsevier DOI
1304
BibRef
Earlier: A1, A3, A2:
A Fast Joint Bioinspired Algorithm for Optic Flow and Two-Dimensional
Disparity Estimation,
CVS09(184-193).
Springer DOI
0910
Motion interpretation; Affine description; Recursive filtering; Kalman
filter; Time-to-contact; Surface orientation; Biologically inspired
vision
BibRef
Rahadianti, L.[Laksmita],
Jeong, W.[Wooseong],
Sakaue, F.[Fumihiko],
Sato, J.[Jun],
Time-to-Contact in Scattering Media,
IEICE(E100-D), No. 3, March 2017, pp. 564-573.
WWW Link.
1703
Photometric information rather than geometric.
BibRef
Seo, S.Y.[Su-Young],
Estimation of edge displacement against brightness and camera-to-object
distance,
IET-IPR(11), No. 8, August 2017, pp. 568-577.
DOI Link
1708
BibRef
Xing, L.J.[Lin-Jie],
Yu, K.[Kailong],
Yang, Y.[Yang],
Target Positioning for Complex Scenes in Remote Sensing Frame Using
Depth Estimation Based on Optical Flow Information,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Sperling, M.,
Bouteiller, Y.,
de Azambuja, R.,
Beltrame, G.,
Domain Generalization via Optical Flow: Training a CNN in a
Low-Quality Simulation to Detect Obstacles in the Real World,
CRV20(117-124)
IEEE DOI
2006
sim2real, optical flow, domain generalization
BibRef
Garcia, A.J.S.,
Figueroa, H.V.R.,
Hernandez, A.M.,
Verdin, M.K.C.,
Vega, G.C.,
Estimation of time-to-contact from Tau-margin and statistical
analysis of behavior,
WSSIP16(1-6)
IEEE DOI
1608
approximation theory
BibRef
Watanabe, Y.[Yukitoshi],
Sakaue, F.[Fumihiko],
Sato, J.[Jun],
Time-to-contact from image intensity,
CVPR15(4176-4183)
IEEE DOI
1510
BibRef
Benamar, F.,
El Fkihi, S.,
Demonceaux, C.,
Mouaddib, E.,
Aboutajdine, D.,
Gradient-based time to contact on paracatadioptric camera,
ICIP13(5-9)
IEEE DOI
1402
BibRef
Earlier: A1, A3, A2, A4, A5:
Time to contact estimation on paracatadioptric cameras,
ICPR12(3602-3605).
WWW Link.
1302
Cameras
BibRef
Boroujeni, N.S.[Nasim Sepehri],
Etemad, S.A.[S. Ali],
Whitehead, A.[Anthony],
Fast obstacle detection using targeted optical flow,
ICIP12(65-68).
IEEE DOI
1302
BibRef
Kimmerle, S.[Stefan],
Nesme, M.[Matthieu],
Faure, F.[François],
Hierarchy Accelerated Stochastic Collision Detection,
VMV04(307-314).
0411
BibRef
Heinrich, S.,
Real Time Fusion of Motion and Stereo Using Flow/Depth Constraint for
Fast Obstacle Detection,
DAGM02(75 ff.).
Springer DOI
0303
BibRef
Stöffler, N.O.,
Burkert, T.,
Färber, G.,
Real-time Obstacle Avoidance Using an MPEG-processor-based Optic Flow
Sensor,
ICPR00(Vol IV: 161-166).
IEEE DOI
0009
BibRef
Colombo, C.,
del Bimbo, A.,
Generalized Bounds for Time to Collision from First-Order Image Motion,
ICCV99(220-226).
IEEE DOI
BibRef
9900
Lourakis, M.I.A.[Manolis I.A.],
Orphanoudakis, S.C.[Stelios C.],
Using Planar Parallax to Estimate the Time-to-Contact,
CVPR99(II: 640-645).
IEEE DOI
BibRef
9900
Fornland, P.[Pär],
Obstacle Detection and Multiple Scale Motion Estimation,
SSAB96(29-33).
BibRef
9600
Fornland, P.[Pär],
Direct Obstacle Detection and Motion from
Spatio-Temporal Derivatives,
CAIP95(874-879).
Springer DOI
9509
BibRef
Arnspang, J.[Jens],
Henriksen, K.[Knud],
Stahr, R.[Robert],
Estimating time to contact with curves, avoiding calibration and
aperture problem,
CAIP95(856-861).
Springer DOI
9509
BibRef
Seales, W.B.[W. Brent],
Measuring time-to-contact using active camera control,
CAIP95(944-949).
Springer DOI
9509
BibRef
Bobet, P.,
Schmid, C.,
Obstacle Detection Analysis,
CVPR94(796-799).
IEEE DOI J.M. Bedrune, J. Crowley
were listed in an early version of the paper.
BibRef
9400
Sinclair, D.,
Boufama, B.S.,
Mohr, R.,
Independent Motion Segmentation and Collision Prediction for
Road Vehicles,
CVPR94(958-961).
IEEE DOI
BibRef
9400
And: A1, A2 only:
ECCV94(A:159-166).
Springer DOI
BibRef
Lawn, J.M.,
Cipolla, R.,
Robust Egomotion Estimation from Affine Motion Parallax,
ECCV94(A:205-210).
Springer DOI
PS File.
BibRef
9400
Lawn, J.M.[Jonathan M.],
Cipolla, R.[Roberto],
Epipole Estimation Using Affine Motion-Parallax,
BMVC93(379-388).
PDF File. Cambridge Univ.
HTML Version.
PS File.
BibRef
9300
Cipolla, R.,
Okamoto, Y., and
Kuno, Y.,
Robust Structure from Motion using Motion Parallax,
ICCV93(374-382).
IEEE DOI
BibRef
9300
Atherton, T.J.,
Kerbyson, D.J.,
Nudd, G.R.,
Passive Estimation of Range to Objects from Image Sequences,
BMVC91(xx-yy).
PDF File.
9109
BibRef
Ahuja, N.,
Chien, R.T.,
Yen, R., and
Bridwell, N.,
Interference Detection and Collision Avoidance Among
Three Dimensional Objects,
AAAI-80(44-48).
BibRef
8000
Chapter on Optical Flow Field Computations and Use continues in
Fluid Flow, Fluid Motion, Visualization for Flow, Fluids .