Bobick, A.F.[Aaron F.],
Davis, J.W.[James W.],
The Recognition of Human Movement Using Temporal Templates,
PAMI(23), No. 3, March 2001, pp. 257-267.
IEEE DOI
0103
BibRef
Earlier:
Action Recognition Using Temporal Templates,
MBR97(Chapter 6).
BibRef
Earlier:
Real-Time Recognition of Activity Using Temporal Templates,
WACV96(39-42).
IEEE DOI
9609
BibRef
And:
Vismod-386, 1997.
HTML Version.
BibRef
And: A2, A1:
The Representation and Recognition of Action Using Temporal Templates,
CVPR97(928-934).
IEEE DOI
9704
BibRef
And:
Vismod--402, 1997.
HTML Version.
BibRef
Earlier: A1, A2:
An Appearance-Based Representation of Action,
ICPR96(I: 307-312).
IEEE DOI
9608
Actions (human motion). Templates.
A temporal template: a vector image where the value at each point is a funciton
of the motion properties at the corresponding location in the image sequence.
MIT
BibRef
Davis, J.W.[James W.],
Sequential Reliable-Inference for Rapid Detection of Human Actions,
EventVideo04(111).
IEEE DOI
0502
BibRef
Earlier:
Hierarchical Motion History Images for Recognizing Human Motion,
EventVideo01(39-46).
IEEE DOI
0106
BibRef
Davis, J.W.[James W.],
Appearance-Based Motion Recognition of Human Actions,
Vismod-387, 1996, M.S. Thesis
Index on the spatial distribution of motion energy.
HTML Version.
BibRef
9600
Davis, J.W.[James W.],
Tyagi, A.[Ambrish],
Minimal-latency human action recognition using reliable-inference,
IVC(24), No. 5, 1 May 2006, pp. 455-472.
Elsevier DOI
0606
BibRef
Earlier:
A reliable-inference framework for recognition of human actions,
AVSBS03(169-176).
IEEE DOI
0310
Action recognition; Reliable-inference; MAP; Video analysis
Determine shortest video sequence, and extend if confusing or unreliable.
BibRef
Davis, J.W.[James W.],
Gao, H.[Hui],
An expressive three-mode principal components model of human action
style,
IVC(21), No. 11, October 2003, pp. 1001-1016.
Elsevier DOI
0310
BibRef
Earlier:
Recognizing human action efforts: An adaptive three-mode PCA framework,
ICCV03(1463-1469).
IEEE DOI
0311
BibRef
Davis, J.W.,
Gao, H.[Hui],
Kannappan, V.S.,
A three-mode expressive feature model of action effort,
Motion02(139-144).
IEEE DOI
0303
How much effort is required for the action.
BibRef
Ahad, M.A.R.[M. Atiqur Rahman],
Tan, J.K.,
Kim, H.S.,
Ishikawa, S.,
Temporal motion recognition and segmentation approach,
IJIST(19), No. 2, June 2009, pp. 91-99.
DOI Link
0905
BibRef
Ahad, M.A.R.[M. Atiqur Rahman],
Tan, J.K.,
Kim, H.S.,
Ishikawa, S.,
Motion history image: Its variants and applications,
MVA(23), No. 2, March 2012, pp. 255-281.
WWW Link.
1202
BibRef
Earlier:
Action recognition by employing combined directional motion history and
energy images,
CVCGI10(73-78).
IEEE DOI
1006
BibRef
Ahad, M.A.R.[M. Atiqur Rahman],
Computer Vision and Action Recognition:
A Guide for Image Processing and Computer Vision Community
for Action Understanding,
SpringerNew-York, 2012.
Ahad, M.A.R.[M. Atiqur Rahman],
Motion History Images for Action Recognition and Understanding,
Ahad, M.A.R.[M. Atiqur Rahman],
Ogata, T.,
Tan, J.K.,
Kim, H.S.,
Ishikawa, S.,
Motion recognition approach to solve overwriting in complex actions,
FG08(1-6).
IEEE DOI
0809
BibRef
Ahad, M.A.R.[M. Atiqur Rahman],
Smart Approaches for Human Action Recognition,
PRL(34), No. 15, 2013, pp. 1769-1770.
Elsevier DOI
1309
BibRef
Mahbub, U.[Upal],
Imtiaz, H.[Hafiz],
Ahad, M.A.R.[M. Atiqur Rahman],
Action recognition based on statistical analysis from clustered flow
vectors,
SIViP(8), No. 2, February 2014, pp. 243-253.
WWW Link.
1402
BibRef
Ballan, L.[Lamberto],
Bertini, M.[Marco],
del Bimbo, A.[Alberto],
Seidenari, L.[Lorenzo],
Serra, G.[Giuseppe],
Effective Codebooks for Human Action Representation and Classification
in Unconstrained Videos,
MultMed(14), No. 4, 2012, pp. 1234-1245.
IEEE DOI
1208
BibRef
Earlier:
Effective Codebooks for human action categorization,
ObjectEvent09(506-513).
IEEE DOI
0910
BibRef
And:
Recognizing human actions by fusing spatio-temporal appearance and
motion descriptors,
ICIP09(3569-3572).
IEEE DOI
0911
BibRef
Uricchio, T.[Tiberio],
Ballan, L.[Lamberto],
Seidenari, L.[Lorenzo],
del Bimbo, A.[Alberto],
Automatic image annotation via label transfer in the semantic space,
PR(71), No. 1, 2017, pp. 144-157.
Elsevier DOI
1707
Automatic, image, annotation
BibRef
Uricchio, T.[Tiberio],
Bertini, M.[Marco],
Seidenari, L.[Lorenzo],
del Bimbo, A.[Alberto],
Fisher Encoded Convolutional Bag-of-Windows for Efficient Image
Retrieval and Social Image Tagging,
WSM15(1020-1026)
IEEE DOI
1602
Aggregate a set of Deep Convolutional Neural Network (CNN) responses,
extracted from a set of image windows.
BibRef
Uricchio, T.[Tiberio],
Ballan, L.[Lamberto],
Evaluating Temporal Information for Social Image Annotation and
Retrieval,
CIAP13(I:722-732).
Springer DOI
1311
BibRef
Seidenari, L.[Lorenzo],
Serra, G.[Giuseppe],
Bagdanov, A.D.,
del Bimbo, A.[Alberto],
Local Pyramidal Descriptors for Image Recognition,
PAMI(36), No. 5, May 2014, pp. 1033-1040.
IEEE DOI
1405
Approximation methods
BibRef
Costantini, L.[Luca],
Seidenari, L.[Lorenzo],
Serra, G.[Giuseppe],
Capodiferro, L.[Licia],
del Bimbo, A.[Alberto],
Space-Time Zernike Moments and Pyramid Kernel Descriptors for Action
Classification,
CIAP11(II: 199-208).
Springer DOI
1109
BibRef
Kulkarni, K.[Kaustubh],
Evangelidis, G.[Georgios],
Cech, J.[Jan],
Horaud, R.[Radu],
Continuous Action Recognition Based on Sequence Alignment,
IJCV(112), No. 1, March 2015, pp. 90-114.
Springer DOI
1503
BibRef
And:
Erratum:
IJCV(112), No. 1, March 2015, pp. 130.
Springer DOI
1503
See also Continuous Gesture Recognition from Articulated Poses.
BibRef
Tsai, D.M.[Du-Ming],
Chiu, W.Y.[Wei-Yao],
Lee, M.H.[Men-Han],
Optical flow-motion history image (OF-MHI) for action recognition,
SIViP(9), No. 8, November 2015, pp. 1897-1906.
WWW Link.
1511
BibRef
Wang, X.F.[Xiao-Fang],
Qi, C.[Chun],
Action recognition using edge trajectories and motion acceleration
descriptor,
MVA(27), No. 5, August 2016, pp. 861-875.
WWW Link.
1609
BibRef
Wang, X.F.[Xiao-Fang],
Qi, C.[Chun],
Saliency-based dense trajectories for action recognition using
low-rank matrix decomposition,
JVCIR(41), No. 1, 2016, pp. 361-374.
Elsevier DOI
1612
Action recognition
BibRef
Wang, X.F.[Xiao-Fang],
Qi, C.[Chun],
Lin, F.[Fei],
Combined trajectories for action recognition based on saliency
detection and motion boundary,
SP:IC(57), No. 1, 2017, pp. 91-102.
Elsevier DOI
1709
Action recognition
BibRef
Qin, J.[Jie],
Liu, L.[Li],
Yu, M.Y.[Meng-Yang],
Wang, Y.H.[Yun-Hong],
Shao, L.[Ling],
Fast Action Retrieval from Videos via Feature Disaggregation,
CVIU(156), No. 1, 2017, pp. 104-116.
Elsevier DOI
1702
BibRef
Earlier:
BMVC15(xx-yy).
DOI Link
1601
Similarity search
BibRef
Fernando, B.[Basura],
Gavves, E.[Efstratios],
Oramas Mogrovejo, J.A.[José Antonio],
Ghodrati, A.[Amir],
Tuytelaars, T.[Tinne],
Rank Pooling for Action Recognition,
PAMI(39), No. 4, April 2017, pp. 773-787.
IEEE DOI
1703
BibRef
Earlier:
Modeling video evolution for action recognition,
CVPR15(5378-5387)
IEEE DOI
1510
Data models
BibRef
Seo, J.J.[Jeong-Jik],
Kim, H.I.[Hyung-Il],
de Neve, W.[Wesley],
Ro, Y.M.[Yong Man],
Effective and efficient human action recognition using dynamic frame
skipping and trajectory rejection,
IVC(58), No. 1, 2017, pp. 76-85.
Elsevier DOI
1703
Frame skipping
BibRef
Seo, J.J.[Jeong-Jik],
Son, J.[Jisoo],
Kim, H.I.[Hyung-Il],
de Neve, W.[Wesley],
Ro, Y.M.[Yong Man],
Efficient and effective human action recognition in video through
motion boundary description with a compact set of trajectories,
FG15(1-6)
IEEE DOI
1508
feature extraction
BibRef
Matsui, K.[Kenji],
Tamaki, T.[Toru],
Raytchev, B.[Bisser],
Kaneda, K.[Kazufumi],
Trajectory-Set Feature for Action Recognition,
IEICE(E100-D), No. 8, August 2017, pp. 1922-1924.
WWW Link.
1708
BibRef
Hashiguchi, R.[Ryota],
Tamaki, T.[Toru],
Temporal Cross-attention for Action Recognition,
ACCVWS22(283-294).
Springer DOI
2307
BibRef
Raytchev, B.[Bisser],
Kawamoto, H.,
Tamaki, T.[Toru],
Kaneda, K.[Kazufumi],
Higher-level representation of local spatio-temporal features for
human action recognition using Subspace Matching Kernels,
ICPR16(3862-3867)
IEEE DOI
1705
Feature extraction, Histograms, Kernel, Manifolds, Measurement,
Videos
BibRef
Raytchev, B.[Bisser],
Shigenaka, R.[Ryosuke],
Tamaki, T.[Toru],
Kaneda, K.[Kazufumi],
Action recognition by orthogonalized subspaces of local
spatio-temporal features,
ICIP13(4387-4391)
IEEE DOI
1402
Action Recognition
BibRef
Sultani, W.[Waqas],
Zhang, D.[Dong],
Shah, M.[Mubarak],
Unsupervised action proposal ranking through proposal recombination,
CVIU(161), No. 1, 2017, pp. 42-50.
Elsevier DOI
1708
Action proposal ranking
BibRef
Sultani, W.[Waqas],
Shah, M.[Mubarak],
Automatic action annotation in weakly labeled videos,
CVIU(161), No. 1, 2017, pp. 77-86.
Elsevier DOI
1708
BibRef
And:
What If We Do Not have Multiple Videos of the Same Action? Video
Action Localization Using Web Images,
CVPR16(1077-1085)
IEEE DOI
1612
Weakly supervised.
BibRef
Sultani, W.[Waqas],
Shah, M.[Mubarak],
Human action recognition in drone videos using a few aerial training
examples,
CVIU(206), 2021, pp. 103186.
Elsevier DOI
2104
Few real aerial examples,
Game videos for aerial action recognition, Disjoint multitask learning
BibRef
Yeung, S.[Serena],
Russakovsky, O.[Olga],
Jin, N.[Ning],
Andriluka, M.[Mykhaylo],
Mori, G.[Greg],
Fei-Fei, L.[Li],
Every Moment Counts: Dense Detailed Labeling of Actions in Complex
Videos,
IJCV(126), No. 2-4, April 2018, pp. 375-389.
Springer DOI
1804
Dense labels -- every frame. LSTM networks.
BibRef
Varol, G.[Gül],
Laptev, I.[Ivan],
Schmid, C.[Cordelia],
Long-Term Temporal Convolutions for Action Recognition,
PAMI(40), No. 6, June 2018, pp. 1510-1517.
IEEE DOI
1805
Estimation, Network architecture, Neural networks, Optical filters,
Optical imaging, Spatial resolution, Training, Action recognition,
video analysis
BibRef
El-Henawy, I.M.[Ibrahim M.],
Ahmed, K.[Kareem],
Mahmoud, H.A.[Hamdi A.],
Action recognition using fast HOG3D of integral videos and
Smith-Waterman partial matching,
IET-IPR(12), No. 6, June 2018, pp. 896-908.
DOI Link
1805
BibRef
Earlier: A2, A1, A3:
Action recognition technique based on fast HOG3D of integral
foreground snippets and random forest,
ISCV17(1-7)
IEEE DOI
1710
image recognition, image representation,
input video file, random forest, videos representation,
Trajectory, Action recognition, HOG3D, Random Forest, gesture, spatio-temporal
BibRef
Carmona, J.M.[Josep Maria],
Climent, J.[Joan],
Human action recognition by means of subtensor projections and dense
trajectories,
PR(81), 2018, pp. 443-455.
Elsevier DOI
1806
Action recognition, Subtensors, Dense trajectories,
Keypoint descriptors, Temporal template
BibRef
Phan, H.H.[Hai-Hong],
Vu, N.S.[Ngoc-Son],
Nguyen, V.L.[Vu-Lam],
Quoy, M.[Mathias],
Action recognition based on motion of oriented magnitude patterns and
feature selection,
IET-CV(12), No. 5, August 2018, pp. 735-743.
DOI Link
1807
BibRef
Earlier:
Motion of Oriented Magnitudes Patterns for Human Action Recognition,
ISVC16(II: 168-177).
Springer DOI
1701
BibRef
Ghorbel, E.[Enjie],
Boutteau, R.[Rémi],
Boonaert, J.[Jacques],
Savatier, X.[Xavier],
Lecoeuche, S.[Stéphane],
Kinematic Spline Curves: A temporal invariant descriptor for fast
action recognition,
IVC(77), 2018, pp. 60-71.
Elsevier DOI
1809
BibRef
Earlier:
A fast and accurate motion descriptor for human action recognition
applications,
ICPR16(919-924)
IEEE DOI
1705
RBG-D cameras, Action recognition, Low computational latency,
Temporal normalization.
Acceleration, Interpolation, Kinematics, Kinetic energy, Skeleton,
Splines (mathematics), Trajectory
BibRef
Sabri, A.Q.M.[A.Q. Muhammad],
Boonaert, J.,
Lecoeuche, S.,
Mouaddib, E.,
Human action classification using surf based spatio-temporal correlated
descriptors,
ICIP12(1401-1404).
IEEE DOI
1302
BibRef
Blokus, A.[Adam],
Krawczyk, H.[Henryk],
Systematic approach to binary classification of images in video streams
using shifting time windows,
SIViP(13), No. 2, March 2019, pp. 341-348.
Springer DOI
1904
First initial classification of single frame. Then temporal analysis.
BibRef
Wang, T.W.[Ting-Wei],
Duan, P.[Peng],
Ma, B.X.[Bing-Xian],
Wu, P.[Peng],
Lu, W.Z.[Wei-Zhi],
Action recognition using dynamic hierarchical trees,
JVCIR(61), 2019, pp. 315-325.
Elsevier DOI
1906
Action recognition, Hierarchical modeling, Evolution, Tree kernel
BibRef
Edison, A.[Anitha],
Jiji, C.V.,
Automated video analysis for action recognition using descriptors
derived from optical acceleration,
SIViP(13), No. 5, July 2019, pp. 915-922.
Springer DOI
1906
Acceleration computed from Optical Flow for actions descriptions.
BibRef
Zhang, H.Y.[Hao-Yuan],
Hou, Y.H.[Yong-Hong],
Zhang, W.J.[Wen-Jing],
Li, W.Q.[Wan-Qing],
Contrastive Positive Mining for Unsupervised 3D Action Representation
Learning,
ECCV22(IV:36-51).
Springer DOI
2211
BibRef
Li, C.K.[Chuan-Kun],
Hou, Y.H.[Yong-Hong],
Li, W.Q.[Wan-Qing],
Wang, P.C.[Pi-Chao],
Learning attentive dynamic maps (ADMs) for Understanding Human
Actions,
JVCIR(65), 2019, pp. 102640.
Elsevier DOI
1912
Human-robot/machine interaction, Deep learning, Human action recognition
BibRef
Alwando, E.H.P.[Erick Hendra Putra],
Chen, Y.T.[Yie-Tarng],
Fang, W.H.[Wen-Hsien],
CNN-Based Multiple Path Search for Action Tube Detection in Videos,
CirSysVideo(30), No. 1, January 2020, pp. 104-116.
IEEE DOI
2002
BibRef
Earlier:
Multiple path search for action tube detection in videos,
ICIP17(4232-4236)
IEEE DOI
1803
convolutional neural nets, feature extraction,
image motion analysis, object detection, video signal processing,
object detection.
Complexity theory, Message passing, Proposals,
Radio frequency, Search problems, Videos, Action localization.
BibRef
Song, S.J.[Si-Jie],
Liu, J.Y.[Jia-Ying],
Li, Y.H.[Yang-Hao],
Guo, Z.M.[Zong-Ming],
Modality Compensation Network:
Cross-Modal Adaptation for Action Recognition,
IP(29), 2020, pp. 3957-3969.
IEEE DOI
2002
Modality compensation, multi-modal, action recognition
BibRef
de Souza Brito, A.[André],
Bernardes Vieira, M.[Marcelo],
Moraes Villela, S.[Saulo],
Tacon, H.[Hemerson],
de Lima Chaves, H.[Hugo],
de Almeida Maia, H.[Helena],
Ttito Concha, D.[Darwin],
Pedrini, H.[Helio],
Weighted voting of multi-stream convolutional neural networks for
video-based action recognition using optical flow rhythms,
JVCIR(77), 2021, pp. 103112.
Elsevier DOI
2106
Convolutional neural networks, Action recognition, Optical flow rhythm
BibRef
Yang, J.Y.[Jian-Yu],
Huang, Y.[Yao],
Shao, Z.P.[Zhan-Peng],
Liu, C.P.[Chun-Ping],
Learning Discriminative Motion Feature for Enhancing Multi-Modal
Action Recognition,
JVCIR(79), 2021, pp. 103263.
Elsevier DOI
2109
Motion feature, Bag of features, Dynamic image, Action recognition
BibRef
Roy, D.[Debaditya],
Fernando, B.[Basura],
Action Anticipation Using Pairwise Human-Object Interactions and
Transformers,
IP(30), 2021, pp. 8116-8129.
IEEE DOI
2110
Transformers, Affordances, Visualization, Task analysis,
Predictive models, Convolutional codes, Feature extraction,
object recognition
BibRef
Loh, S.Y.B.[Si-Yuan Brandon],
Roy, D.[Debaditya],
Fernando, B.[Basura],
Long-term Action Forecasting Using Multi-headed Attention-based
Variational Recurrent Neural Networks,
ABAW22(2418-2426)
IEEE DOI
2210
Training, Uncertainty, Recurrent neural networks,
Predictive models, Hybrid power systems
BibRef
Roy, D.[Debaditya],
Fernando, B.[Basura],
Action anticipation using latent goal learning,
WACV22(808-816)
IEEE DOI
2202
Training, Computational modeling,
Predictive models, Action and Behavior Recognition
BibRef
Jayasundara, V.[Vinoj],
Roy, D.[Debaditya],
Fernando, B.[Basura],
FlowCaps: Optical Flow Estimation with Capsule Networks For Action
Recognition,
WACV21(3408-3417)
IEEE DOI
2106
Solid modeling,
Computational modeling, Estimation, Encoding
BibRef
Zhuang, P.Q.[Pei-Qin],
Guo, Y.[Yu],
Yu, Z.P.[Zhi-Peng],
Zhou, L.P.[Lu-Ping],
Bai, L.[Lei],
Liang, D.[Ding],
Wang, Z.Y.[Zhi-Yong],
Wang, Y.[Yali],
Ouyang, W.L.[Wan-Li],
Action Recognition With Motion Diversification and Dynamic Selection,
IP(31), 2022, pp. 4884-4896.
IEEE DOI
2208
Costs, Visualization, Dynamics, Adaptation models,
Feature extraction, Optical flow, Action recognition,
dynamic network
BibRef
Huang, G.X.[Guo-Xi],
Bors, A.G.[Adrian G.],
BQN: Busy-Quiet Net Enabled by Motion Band-Pass Module for Action
Recognition,
IP(31), 2022, pp. 4966-4979.
IEEE DOI
2208
Band-pass filters, Redundancy, Optical flow, Convolution,
Termination of employment,
action recognition
BibRef
Yan, R.[Rui],
Xie, L.X.[Ling-Xi],
Shu, X.B.[Xiang-Bo],
Zhang, L.Y.[Li-Yan],
Tang, J.H.[Jin-Hui],
Progressive Instance-Aware Feature Learning for Compositional Action
Recognition,
PAMI(45), No. 8, August 2023, pp. 10317-10330.
IEEE DOI
2307
Feature extraction, Videos, Semantics, Predictive models,
Representation learning, Visualization, Training,
human action recognition
BibRef
Yang, M.L.[Ming-Lei],
Song, Y.[Yan],
Shu, X.B.[Xiang-Bo],
Tang, J.H.[Jin-Hui],
Temporal Action Localization Based on Temporal Evolution Model and
Multiple Instance Learning,
MMMod19(II:341-351).
Springer DOI
1901
BibRef
Li, Y.X.[Yi-Xuan],
Wang, Z.Z.[Zhen-Zhi],
Li, Z.F.[Zhi-Feng],
Wang, L.M.[Li-Min],
Sparse Action Tube Detection,
IP(33), 2024, pp. 1740-1752.
IEEE DOI
2403
Action in an image and link through time.
Detectors, Feature extraction, Location awareness,
Predictive models, Task analysis, Transformers, action recognition
BibRef
Zhang, Y.Q.[Yu-Qi],
Li, X.[Xiucheng],
Xie, H.[Hao],
Zhuang, W.J.[Wei-Jun],
Guo, S.H.[Shi-Hui],
Li, Z.J.[Zhi-Jun],
Multi-Label Action Anticipation for Real-World Videos With Scene
Understanding,
IP(33), 2024, pp. 3242-3255.
IEEE DOI
2405
Standards, Grammar, Videos, Predictive models, Proposals, Genomics, Focusing,
Action anticipation, real-world datasets, scene graph, stochastic grammar
BibRef
Lee, J.Y.[Ji-Young],
Kim, S.[Seungryong],
Kim, S.[Sunok],
Sohn, K.H.[Kwang-Hoon],
Discriminative action tubelet detector for weakly-supervised action
detection,
PR(155), 2024, pp. 110704.
Elsevier DOI
2408
Spatiotemporal action detection, Action proposal, Weakly-supervised learning
BibRef
Shiba, S.[Shintaro],
Aoki, Y.[Yoshimitsu],
Gallego, G.[Guillermo],
Secrets of Event-Based Optical Flow,
ECCV22(XVIII:628-645).
Springer DOI
2211
BibRef
Wang, L.,
Koniusz, P.,
Huynh, D.,
Hallucinating IDT Descriptors and I3D Optical Flow Features for
Action Recognition With CNNs,
ICCV19(8697-8707)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image colour analysis, image motion analysis, Training
BibRef
Han, T.D.[Teng-Da],
Xie, W.D.[Wei-Di],
Zisserman, A.[Andrew],
Memory-augmented Dense Predictive Coding for Video Representation
Learning,
ECCV20(III:312-329).
Springer DOI
2012
BibRef
Han, T.D.[Teng-Da],
Xie, W.D.[Wei-Di],
Zisserman, A.[Andrew],
Video Representation Learning by Dense Predictive Coding,
HVU19(1483-1492)
IEEE DOI
2004
image motion analysis, image representation,
learning (artificial intelligence), video coding, video
BibRef
Crasto, N.[Nieves],
Weinzaepfel, P.[Philippe],
Alahari, K.[Karteek],
Schmid, C.[Cordelia],
MARS: Motion-Augmented RGB Stream for Action Recognition,
CVPR19(7874-7883).
IEEE DOI
2002
BibRef
Sevilla-Lara, L.[Laura],
Liao, Y.[Yiyi],
Güney, F.[Fatma],
Jampani, V.[Varun],
Geiger, A.[Andreas],
Black, M.J.[Michael J.],
On the Integration of Optical Flow and Action Recognition,
GCPR18(281-297).
Springer DOI
1905
BibRef
Hommos, O.[Omar],
Pintea, S.L.[Silvia L.],
Mettes, P.S.[Pascal S.],
van Gemert, J.C.[Jan C.],
Using Phase Instead of Optical Flow for Action Recognition,
OpticalFlow18(VI:678-691).
Springer DOI
1905
BibRef
Hiraoka, H.[Hiroki],
Imiya, A.[Atsushi],
Topological Labelling of Scene using Background/Foreground Separation
and Epipolar Geometry,
RSL-CV19(652-660)
IEEE DOI
2004
geometry, image segmentation, image sequences,
principal component analysis, stereo image processing, Superpixels
BibRef
Gotoh, I.[Itaru],
Hiraoka, H.[Hiroki],
Imiya, A.[Atsushi],
Event Extraction Using Transportation of Temporal Optical Flow Fields,
OpticalFlow18(VI:692-705).
Springer DOI
1905
BibRef
Zhang, W.[Wei],
Cen, J.P.[Jie-Peng],
Zheng, H.C.[Hui-Cheng],
Temporal Inception Architecture for Action Recognition with
Convolutional Neural Networks,
ICPR18(3216-3221)
IEEE DOI
1812
Kernel, Feature extraction, Videos, Streaming media,
Pattern recognition
BibRef
Sun, S.,
Kuang, Z.,
Sheng, L.,
Ouyang, W.,
Zhang, W.,
Optical Flow Guided Feature: A Fast and Robust Motion Representation
for Video Action Recognition,
CVPR18(1390-1399)
IEEE DOI
1812
Feature extraction, Optical network units, Optical flow,
Dynamics, Network architecture
BibRef
Diba, A.[Ali],
Sharma, V.[Vivek],
Van Gool, L.J.[Luc J.],
Stiefelhagen, R.,
DynamoNet: Dynamic Action and Motion Network,
ICCV19(6191-6200)
IEEE DOI
2004
convolutional neural nets, image classification,
image filtering, image motion analysis, image representation,
Convolution
BibRef
Alwassel, H.[Humam],
Heilbron, F.C.[Fabian Caba],
Escorcia, V.[Victor],
Ghanem, B.[Bernard],
Diagnosing Error in Temporal Action Detectors,
ECCV18(III: 264-280).
Springer DOI
1810
BibRef
Lee, M.G.[Myung-Gi],
Lee, S.[Seungeui],
Son, S.J.[Sung-Joon],
Park, G.[Gyutae],
Kwak, N.[Nojun],
Motion Feature Network: Fixed Motion Filter for Action Recognition,
ECCV18(X: 392-408).
Springer DOI
1810
BibRef
Sun, C.[Chen],
Shrivastava, A.[Abhinav],
Vondrick, C.[Carl],
Sukthankar, R.[Rahul],
Murphy, K.[Kevin],
Schmid, C.[Cordelia],
Relational Action Forecasting,
CVPR19(273-283).
IEEE DOI
2002
BibRef
Sun, C.[Chen],
Shrivastava, A.[Abhinav],
Vondrick, C.[Carl],
Murphy, K.[Kevin],
Sukthankar, R.[Rahul],
Schmid, C.[Cordelia],
Actor-Centric Relation Network,
ECCV18(XI: 335-351).
Springer DOI
1810
BibRef
Liu, C.,
Xu, X.,
Zhang, Y.,
Temporal Attention Network for Action Proposal,
ICIP18(2281-2285)
IEEE DOI
1809
Temporal action proposal, temporal attention,
untrimmed video analysis, neural network
BibRef
Kwon, O.C.,
Kim, J.,
Yoo, C.D.,
Action Recognition: First-and Second-Order 3D Feature in
Bi-Directional Attention Network,
ICIP18(3453-3457)
IEEE DOI
1809
Bidirectional control,
Convolutional neural networks, Visualization, Feeds,
spatio-temporal bi-directional LSTM Attention
BibRef
Yu, R.,
Wang, H.,
Davis, L.S.,
ReMotENet: Efficient Relevant Motion Event Detection for Large-Scale
Home Surveillance Videos,
WACV18(1642-1651)
IEEE DOI
1806
image motion analysis, learning (artificial intelligence),
neural nets, object detection, video surveillance, 3D ConvNets,
Videos
BibRef
Ng, J.Y.H.,
Davis, L.S.,
Temporal Difference Networks for Video Action Recognition,
WACV18(1587-1596)
IEEE DOI
1806
feedforward neural nets, image classification,
image motion analysis, image recognition, image representation,
BibRef
Ng, J.Y.H.,
Choi, J.,
Neumann, J.,
Davis, L.S.[Larry S.],
ActionFlowNet: Learning Motion Representation for Action Recognition,
WACV18(1616-1624)
IEEE DOI
1806
image motion analysis, image recognition, image representation,
image sequences, learning (artificial intelligence), neural nets,
Task analysis
BibRef
Zhang, T.Y.[Tian-Yi],
Niu, L.[Li],
Cai, J.F.[Jian-Fei],
Kot, A.C.[Alex C.],
Action proposals using hierarchical clustering of super-trajectories,
VCIP17(1-4)
IEEE DOI
1804
gesture recognition, sport, unsupervised learning,
video signal processing, action localization task,
Trajectory Grouping
BibRef
Fang, H.,
Thiyagalingam, J.,
Bessis, N.,
Edirisinghe, E.,
Fast and reliable human action recognition in video sequences by
sequential analysis,
ICIP17(3973-3977)
IEEE DOI
1803
Feature extraction, Reliability, Sequential analysis,
Streaming media, Task analysis, Training, Video sequences,
sequential probability ratio test(SPRT)
BibRef
Liu, Z.,
Tian, Y.,
Wang, Z.,
Improving human action recognitionby temporal attention,
ICIP17(870-874)
IEEE DOI
1803
Adaptation models, Feature extraction,
Optical imaging, Recurrent neural networks, Training, Videos,
temporal attention
BibRef
Xiao, X.,
Hu, H.,
Wang, W.,
Trajectories-based motion neighborhood feature for human action
recognition,
ICIP17(4147-4151)
IEEE DOI
1803
Handheld computers, Indexes,
Support vector machines, Trajectory,
linear SVM
BibRef
Pu, J.,
Matsui, Y.,
Yang, F.,
Satoh, S.,
Energy based fast event retrieval in video with temporal match kernel,
ICIP17(885-889)
IEEE DOI
1803
Event retrieval, temporal match kernel
BibRef
Hou, R.[Rui],
Chen, C.[Chen],
Shah, M.[Mubarak],
Tube Convolutional Neural Network (T-CNN) for Action Detection in
Videos,
ICCV17(5823-5832)
IEEE DOI
1802
convolution, feature extraction, image classification,
image motion analysis, image recognition,
Videos
BibRef
Kalogeiton, V.[Vicky],
Weinzaepfel, P.[Philippe],
Ferrari, V.[Vittorio],
Schmid, C.[Cordelia],
Action Tubelet Detector for Spatio-Temporal Action Localization,
ICCV17(4415-4423)
IEEE DOI
1802
convolution, feature extraction, image sequences, object detection,
regression analysis, video signal processing, ACT-detector,
Videos
BibRef
Buch, S.,
Escorcia, V.,
Shen, C.,
Ghanem, B.,
Niebles, J.C.,
SST: Single-Stream Temporal Action Proposals,
CVPR17(6373-6382)
IEEE DOI
1711
Computational modeling, Proposals, Training,
Video sequences, Visualization
BibRef
Sigurdsson, G.A.,
Divvala, S.,
Farhadi, A.,
Gupta, A.,
Asynchronous Temporal Fields for Action Recognition,
CVPR17(5650-5659)
IEEE DOI
1711
Cognition, Hidden Markov models, Semantics, Stochastic processes,
Training, Videos
BibRef
Lan, Z.Z.[Zhen-Zhong],
Yu, S.I.[Shoou-I],
Yao, D.Z.[De-Zhong],
Lin, M.[Ming],
Raj, B.[Bhiksha],
Hauptmann, A.G.[Alexander G.],
The Best of Both Worlds: Combining Data-Independent and Data-Driven
Approaches for Action Recognition,
Robust16(1196-1205)
IEEE DOI
1612
Video features.
BibRef
Yuan, J.[Jun],
Ni, B.B.[Bing-Bing],
Yang, X.K.[Xiao-Kang],
Kassim, A.A.[Ashraf A.],
Temporal Action Localization with Pyramid of Score Distribution
Features,
CVPR16(3093-3102)
IEEE DOI
1612
BibRef
Alwassel, H.[Humam],
Heilbron, F.C.[Fabian Caba],
Ghanem, B.[Bernard],
Action Search: Spotting Actions in Videos and Its Application to
Temporal Action Localization,
ECCV18(IX: 253-269).
Springer DOI
1810
BibRef
Heilbron, F.C.[Fabian Caba],
Niebles, J.C.[Juan Carlos],
Ghanem, B.[Bernard],
Fast Temporal Activity Proposals for Efficient Detection of Human
Actions in Untrimmed Videos,
CVPR16(1914-1923)
IEEE DOI
1612
BibRef
Li, Y.W.[Ying-Wei],
Li, Y.[Yi],
Vasconcelos, N.M.[Nuno M.],
RESOUND: Towards Action Recognition Without Representation Bias,
ECCV18(VI: 520-535).
Springer DOI
1810
BibRef
Li, Y.W.[Ying-Wei],
Li, W.X.[Wei-Xin],
Mahadevan, V.[Vijay],
Vasconcelos, N.M.[Nuno M.],
VLAD3: Encoding Dynamics of Deep Features for Action Recognition,
CVPR16(1951-1960)
IEEE DOI
1612
BibRef
de Souza, C.R.[César Roberto],
Gaidon, A.[Adrien],
Vig, E.[Eleonora],
López, A.M.[Antonio Manuel],
Sympathy for the Details: Dense Trajectories and Hybrid Classification
Architectures for Action Recognition,
ECCV16(VII: 697-716).
Springer DOI
1611
BibRef
Wang, L.M.[Li-Min],
Xiong, Y.J.[Yuan-Jun],
Lin, D.[Dahua],
Van Gool, L.J.[Luc J.],
UntrimmedNets for Weakly Supervised Action Recognition and Detection,
CVPR17(6402-6411)
IEEE DOI
1711
Adaptation models, Feature extraction, Motion pictures, Proposals,
Training, Videos, Visualization
BibRef
Wang, L.M.[Li-Min],
Xiong, Y.J.[Yuan-Jun],
Wang, Z.[Zhe],
Qiao, Y.[Yu],
Lin, D.[Dahua],
Tang, X.[Xiaoou],
Van Gool, L.J.[Luc J.],
Temporal Segment Networks:
Towards Good Practices for Deep Action Recognition,
ECCV16(VIII: 20-36).
Springer DOI
1611
BibRef
Kim, T.S.,
Reiter, A.[Austin],
Interpretable 3D Human Action Analysis with Temporal Convolutional
Networks,
MotionRep17(1623-1631)
IEEE DOI
1709
Activity recognition, Computational modeling, Feature extraction,
Skeleton, Solid modeling.
BibRef
Leyva, R.[Roberto],
Sanchez, V.[Victor],
Li, C.T.[Chang-Tsun],
Fast Binary-Based Video Descriptors for Action Recognition,
DICTA16(1-8)
IEEE DOI
1701
BibRef
Earlier:
A fast binary pair-based video descriptor for action recognition,
ICIP16(4185-4189)
IEEE DOI
1610
Detectors.
3D Binary Pair Differences (3DBPD) for video action recognition.
BibRef
Chen, Q.Q.,
Liu, F.,
Li, X.,
Liu, B.D.,
Zhang, Y.J.,
Saliency-context two-stream convnets for action recognition,
ICIP16(3076-3080)
IEEE DOI
1610
Adaptive optics
BibRef
Li, Z.,
Wang, W.,
Li, N.,
Wang, J.,
Tube ConvNets: Better exploiting motion for action recognition,
ICIP16(3056-3060)
IEEE DOI
1610
Clustering algorithms
BibRef
Wu, Z.X.[Zu-Xuan],
Fu, Y.W.[Yan-Wei],
Jiang, Y.G.[Yu-Gang],
Sigal, L.[Leonid],
Harnessing Object and Scene Semantics for Large-Scale Video
Understanding,
CVPR16(3112-3121)
IEEE DOI
1612
BibRef
Jia, C.C.[Cheng-Cheng],
Pang, W.[Wei],
Fu, Y.[Yun],
Mode-Driven Volume Analysis Based on Correlation of Time Series,
VECTaR14(818-833).
Springer DOI
1504
BibRef
Sun, X.[Xin],
Huang, D.[Di],
Wang, Y.H.[Yun-Hong],
Qin, J.[Jie],
Action recognition based on kinematic representation of video data,
ICIP14(1530-1534)
IEEE DOI
1502
Acceleration
BibRef
Liu, M.Y.[Meng-Yuan],
Liu, H.[Hong],
Sun, Q.R.[Qian-Ru],
Action classification by exploring directional co-occurrence of
weighted stips,
ICIP14(1460-1464)
IEEE DOI
1502
Accuracy
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Spatio-Temporal Techniques for Human Action Recognition and Detection .