21.7.4.3 Pneumonia, Lung Analysis, Flu

Chapter Contents (Back)
Pneumonia. Lungs. Medical, Applications.
See also COVID, Lung Analyusis.
See also GIS: for COVID Specific Tracking, Spread, Analysis.

Pattichis, M.S., Cacoullos, T., Soliz, P.[Peter],
New models for region of interest reader classification analysis in chest radiographs,
PR(42), No. 6, June 2009, pp. 1058-1066.
Elsevier DOI 0902
Region of interest classification; Chest radiographs; ROC analysis; Binary classification; Pneumoconiosis; Modeling biomedical systems; Logic, set theory, and algebra; Mathematical procedures and computer techniques BibRef

Zhao, W.[Wei], Xu, R.[Rui], Hirano, Y.S.[Yasu-Shi], Tachibana, R.[Rie], Kido, S.[Shoji], Suganuma, N.[Narufumi],
Classification of Pneumoconiosis on HRCT Images for Computer-Aided Diagnosis,
IEICE(E96-D), No. 4, April 2013, pp. 836-844.
WWW Link. 1304
BibRef

Wang, Y.[Ying], Waylen, P.R.[Peter R.], Mao, L.[Liang],
Modeling Properties of Influenza-Like Illness Peak Events with Crossing Theory,
IJGI(3), No. 2, 2014, pp. 764-780.
DOI Link 1407
BibRef

Dey, N.[Nilanjan], Zhang, Y.D.[Yu-Dong], Rajinikanth, V., Pugalenthi, R., Raja, N.S.M.[N. Sri Madhava],
Customized VGG19 Architecture for Pneumonia Detection in Chest X-Rays,
PRL(143), 2021, pp. 67-74.
Elsevier DOI 2102
Chest X-Ray, Pneumonia, VGG19 Architecture, Deep-Learning, Ensemble Feature Scheme BibRef

Akgundogdu, A.[Abdurrahim],
Detection of pneumonia in chest X-ray images by using 2D discrete wavelet feature extraction with random forest,
IJIST(31), No. 1, 2021, pp. 82-93.
DOI Link 2102
image classification, machine learning, pneumonia, random forest, wavelet BibRef

Samulowska, M.[Marta], Chmielewski, S.[Szymon], Raczko, E.[Edwin], Lupa, M.[Michal], Myszkowska, D.[Dorota], Zagajewski, B.[Bogdan],
Crowdsourcing without Data Bias: Building a Quality Assurance System for Air Pollution Symptom Mapping,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Hu, J.L.[Jin-Long], Xu, S.H.[Song-Hua], Ding, X.D.[Xiang-Dong],
A Triplet network framework based automatic assessment of simulation quality for respiratory droplet propagation,
PR(119), 2021, pp. 108060.
Elsevier DOI 2108
Simulation quality assessment, Respiratory droplet propagation, Triplet network, Attentive temporal pooling BibRef

Islam, S.R.[Sheikh Rafiul], Maity, S.P.[Santi P.], Ray, A.K.[Ajoy Kumar], Mandal, M.[Mrinal],
Deep learning on compressed sensing measurements in pneumonia detection,
IJIST(32), No. 1, 2022, pp. 41-54.
DOI Link 2201
autoencoder, CNN, compressed sensing, deep learning, pneumonia detection BibRef

Ben Atitallah, S.[Safa], Driss, M.[Maha], Boulila, W.[Wadii], Koubaa, A.[Anis], Ben Ghézala, H.[Henda],
Fusion of convolutional neural networks based on Dempster-Shafer theory for automatic pneumonia detection from chest X-ray images,
IJIST(32), No. 2, 2022, pp. 658-672.
DOI Link 2203
convolutional neural networks, deep learning, Dempster-Shafer theory, evidence-based fusion, transfer learning BibRef

Bodasingi, N.[Nalini], Balaji, N.[Narayanam], Jammu, B.R.[Bhaskara Rao],
Automatic diagnosis of pneumonia using backward elimination method based SVM and its hardware implementation,
IJIST(32), No. 3, 2022, pp. 1000-1014.
DOI Link 2205
backward elimination method, chest X-ray, support vector machine BibRef

Sanchez, K.[Karen], Hinojosa, C.[Carlos], Arguello, H.[Henry], Kouamé, D.[Denis], Meyrignac, O.[Olivier], Basarab, A.[Adrian],
CX-DaGAN: Domain Adaptation for Pneumonia Diagnosis on a Small Chest X-Ray Dataset,
MedImg(41), No. 11, November 2022, pp. 3278-3288.
IEEE DOI 2211
Pulmonary diseases, X-ray imaging, Medical diagnostic imaging, Deep learning, Training, X-rays, Lung, Chest X-ray, deep learning, pneumonia diagnosis BibRef

Han, Z.Y.[Zhong-Yi], Gui, X.J.[Xian-Jin], Sun, H.L.[Hao-Liang], Yin, Y.L.[Yi-Long], Li, S.[Shuo],
Towards Accurate and Robust Domain Adaptation Under Multiple Noisy Environments,
PAMI(45), No. 5, May 2023, pp. 6460-6479.
IEEE DOI 2304
Noise measurement, Task analysis, COVID-19, Training, Machine learning algorithms, X-ray imaging, Supervised learning, non-stationary environments BibRef

Ewaidat, H.A.[Haytham Al], Balawi, S.[Sara], Bataineh, Z.[Ziad], Al-Dwairi, A.[Ahmed], Al-Khalily, M.[Majd], Azez, K.A.[Khalaf Abdel], Almakhadmeh, A.[Ali],
Establishment of national diagnostic reference levels as guidelines for computed tomography radiation in Jordan,
IJIST(33), No. 4, 2023, pp. 1223-1234.
DOI Link 2307
CT scan, CTDIv, diagnostic reference levels BibRef

Yan, N.[Nan], Tao, Y.[Ye],
Pneumonia X-ray detection with anchor-free detection framework and data augmentation,
IJIST(33), No. 4, 2023, pp. 1235-1246.
DOI Link 2307
anchor-free detection framework, computer-aided diagnosis, data augmentation, pneumonia detection BibRef

Madan, S.[Shipra], Chaudhury, S.[Santanu], Gandhi, T.K.[Tapan Kumar],
Explainable few-shot learning with visual explanations on a low resource pneumonia dataset,
PRL(176), 2023, pp. 109-116.
Elsevier DOI 2312
Explainable few-shot learning, Medical image analysis, Back-propagation, Pneumonia, Chest x-ray BibRef

Singh, P.[Pritpal], Huang, Y.P.[Yo-Ping],
An Ambiguous Edge Detection Method for Computed Tomography Scans of Coronavirus Disease 2019 Cases,
SMCS(54), No. 1, January 2024, pp. 352-364.
IEEE DOI 2312
BibRef

Islam, M.K.[Md Khairul], Rahman, M.M.[Md Mahbubur], Ali, M.S.[Md Shahin], Mahim, S.M., Miah, M.S.[Md Sipon],
Enhancing lung abnormalities diagnosis using hybrid DCNN-ViT-GRU model with explainable AI: A deep learning approach,
IVC(142), 2024, pp. 104918.
Elsevier DOI 2402
Lung cancer, COVID-19, Pre-processing, Feature extraction, DCNN-ViT-GRU, Explainable AI BibRef

Wu, H.[Huisi], Zhang, B.M.[Bai-Ming], Chen, C.[Cheng], Qin, J.[Jing],
Federated Semi-Supervised Medical Image Segmentation via Prototype-Based Pseudo-Labeling and Contrastive Learning,
MedImg(43), No. 2, February 2024, pp. 649-661.
IEEE DOI Code:
WWW Link. 2402
Data models, Biomedical imaging, Prototypes, Training, Distributed databases, Servers, COVID-19, Federated learning, medical imaging segmentation BibRef

Xie, J.S.[Jun-Song], Wu, Q.[Qian], Zhu, R.[Renju],
Entropy-guided contrastive learning for semi-supervised medical image segmentation,
IET-IPR(18), No. 2, 2024, pp. 312-326.
DOI Link 2402
contrastive learning, Covid-19, entropy-guided, medical image segmentation, semi-supervised learning BibRef

Kordnoori, S.[Shirin], Sabeti, M.[Maliheh], Mostafaei, H.[Hamidreza], Banihashemi, S.S.A.[Saeed Seyed Agha],
Advances in medical image analysis: A comprehensive survey of lung infection detection,
IET-IPR(18), No. 13, 2024, pp. 3750-3800.
DOI Link 2411
image classification, image segmentation, lung, medical image processing BibRef

Dong, A.[Aimei], Liu, J.[Jian], Lv, G.H.[Guo-Hua], Cheng, J.Y.[Jin-Yong],
GLMR-Net: Global-to-local mutually reinforcing network for pneumonia segmentation and classification,
PR(162), 2025, pp. 111371.
Elsevier DOI 2503
Pneumonia, Segmentation, Classification, Global-to-local, Mutual reinforcement, CT images BibRef

Huang, J.H.[Jin-Hui],
DSSViT: Multi-Scale Adaptive Fusion Vision Transformer With Dense Feature Reuse for Robust Pneumonia Detection in Chest Radiography,
IJIST(35), No. 3, 2025, pp. e70127.
DOI Link 2506
attention mechanism, convolutional neural networks (CNN), dense-SEA VIT (DSSVIT), image classification, vision transformer (VIT) BibRef

He, H.[Huiyao], Zhan, Y.W.[Yin-Wei], Yan, Y.L.[Yu-Lan], Zhan, Y.[Yuefu],
Enhancing 3D Global and Local Feature Extraction for Pneumonia Multilesion Segmentation,
IJIST(35), No. 3, 2025, pp. e70083.
DOI Link 2506
deap learning, Mamba-based segmentation, pneumonia multilesion segmentation BibRef


Ahmed, F.[Faisal], Nuwagira, B.[Brighton], Torlak, F.[Furkan], Coskunuzer, B.[Baris],
Topo-CXR: Chest X-ray TB and Pneumonia Screening with Topological Machine Learning,
CVAMD23(2318-2328)
IEEE DOI 2401
BibRef

Shea, D.E.[Daniel E.], Kulhare, S.[Sourabh], Millin, R.[Rachel], Laverriere, Z.[Zohreh], Mehanian, C.[Courosh], Delahunt, C.B.[Charles B], Banik, D.[Dipayan], Zheng, X.L.[Xin-Liang], Zhu, M.[Meihua], Ji, Y.[Ye], Ostbye, T.[Travis], Mehanian, M.M.S.[Martha-Marie S], Uwajeh, A.[Atinuke], Akinsete, A.M.[Adeseye M.], Wang, F.[Fen], Horning, M.P.[Matthew P.],
Deep Learning Video Classification of Lung Ultrasound Features Associated with Pneumonia,
DL-UIA23(3103-3112)
IEEE DOI 2309
BibRef

Weninger, L.[Leon], Romanzetti, S.[Sandro], Ebert, J.[Julia], Reetz, K.[Kathrin], Merhof, D.[Dorit],
Harmonization of Diffusion MRI Data Obtained with Multiple Head Coils Using Hybrid Cnns,
MIA-COVID19D22(385-396).
Springer DOI 2304
BibRef

Nakhli, R.[Ramin], Darbandsari, A.[Amirali], Farahani, H.[Hossein], Bashashati, A.[Ali],
CCRL: Contrastive Cell Representation Learning,
MIA-COVID19D22(397-407).
Springer DOI 2304
BibRef

Bruton, J., Wang, H.,
Translated Skip Connections: Expanding the Receptive Fields of Fully Convolutional Neural Networks,
ICIP22(631-635)
IEEE DOI 2211
COVID-19, Image segmentation, Convolution, Neural networks, Object segmentation, Benchmark testing, skip connections, dilated convolution BibRef

Zhu, X.Y.[Xiao-Yu], Chen, J.[Jeffrey], Zeng, X.[Xiangrui], Liang, J.W.[Jun-Wei], Li, C.Q.[Cheng-Qi], Liu, S.[Sinuo], Behpour, S.[Sima], Xu, M.[Min],
Weakly Supervised 3D Semantic Segmentation Using Cross-Image Consensus and Inter-Voxel Affinity Relations,
ICCV21(2814-2824)
IEEE DOI 2203
COVID-19, Image segmentation, Solid modeling, Microscopy, Semantics, Integral equations, Medical, biological, and cell microscopy, grouping and shape BibRef

Cao, J.W.[Jia-Wang], Jiang, L.[Lulu], Hou, J.L.[Jun-Lin], Jiang, L.Q.[Long-Quan], Zhao, R.[Ruiwei], Shi, W.Y.[Wei-Ya], Shan, F.[Fei], Feng, R.[Rui],
Exploiting Deep Cross-Slice Features from CT Images for Multi-Class Pneumonia Classification,
ICIP21(205-209)
IEEE DOI 2201
COVID-19, Deep learning, Computed tomography, Pulmonary diseases, Image processing, Imaging, CT image, cross-slice features, context-aware Bi-LSTM BibRef

Panicker, M.R.[Mahesh Raveendranatha], Chen, Y.T.[Yale Tung], Gayathri, M., Madhavanunni, N.A., Narayan, K.V.[Kiran Vishnu], Kesavadas, C., Vinod, A.P.,
Employing Acoustic Features To Aid Neural Networks Towards Platform Agnostic Learning In Lung Ultrasound Imaging,
ICIP21(170-174)
IEEE DOI 2201
COVID-19, Ultrasonic imaging, Neural networks, Lung, Imaging, Tools, Feature extraction, COVID-19, Lung Ultrasound, Pleura Detection, Neural Networks BibRef

Prabhushankar, M.[Mohit], AlRegib, G.[Ghassan],
Extracting Causal Visual Features for Limited Label Classification,
ICIP21(3697-3701)
IEEE DOI 2201
Measurement, COVID-19, Visualization, Image coding, Computed tomography, Neural networks, Visual Causality, Causal metrics BibRef

Wang, D.D.[Da-Dong], Arzhaeva, Y.[Yulia], Devnath, L.[Liton], Qiao, M.Y.[Mao-Ying], Amirgholipour, S.[Saeed], Liao, Q.Y.[Qi-Yu], McBean, R.[Rhiannon], Hillhouse, J.[James], Luo, S.[Suhuai], Meredith, D.[David], Newbigin, K.[Katrina], Yates, D.[Deborah],
Automated Pneumoconiosis Detection on Chest X-Rays Using Cascaded Learning with Real and Synthetic Radiographs,
DICTA20(1-6)
IEEE DOI 2201
Training, Sensitivity, Computational modeling, Pulmonary diseases, Lung, X-rays, Diagnostic radiography, pneumoconiosis, deep learning, black lung BibRef

Tartaglione, E.[Enzo], Barbano, C.A.[Carlo Alberto], Grangetto, M.[Marco],
EnD: Entangling and Disentangling deep representations for bias correction,
CVPR21(13503-13512)
IEEE DOI 2111
Training, COVID-19, Radiography, Deep learning, Training data, Data models BibRef

Prasad, S.[Shitala], Lin, D.Y.[Dong-Yun], Li, Y.Q.[Yi-Qun], Sheng, D.[Dong], Min, O.Z.[Oo Zaw],
Rethinking of Deep Models Parameters with Respect to Data Distribution,
ICPR21(8562-8569)
IEEE DOI 2105
Training, Deep learning, COVID-19, Image segmentation, Annotations, Object detection, Data models BibRef

Xu, R.[Rui], Wang, Y.[Yi], Liu, T.T.[Tian-Tian], Ye, X.C.[Xin-Chen], Lin, L.[Lin], Chen, Y.W.[Yen-Wei], Kido, S.[Shoji], Tomiyama, N.[Noriyuki],
BG-Net: Boundary-Guided Network for Lung Segmentation on Clinical CT Images,
ICPR21(8782-8788)
IEEE DOI 2105
COVID-19, Deep learning, Image segmentation, Hospitals, Computed tomography, Pulmonary diseases, Lung, Lung Segmentation, CT Images BibRef

Buongiorno, R.[Rossana], Germanese, D.[Danila], Romei, C.[Chiara], Tavanti, L.[Laura], de Liperi, A.[Annalisa], Colantonio, S.[Sara],
UIP-Net: A Decoder-encoder CNN for the Detection and Quantification of Usual Interstitial Pneumoniae Pattern in Lung CT Scan Images,
AIHA20(389-405).
Springer DOI 2103
BibRef

Gabruseva, T., Poplavskiy, D., Kalinin, A.,
Deep Learning for Automatic Pneumonia Detection,
WiCV20(1436-1443)
IEEE DOI 2008
Lung, Diseases, Training, X-ray imaging, Diagnostic radiography, Measurement, Predictive models BibRef

Sousa, G.G.B.[Gabriel Garcez Barros], Fernandes, V.R.M.[Vandécia Rejane Monteiro], de Paiva, A.C.[Anselmo Cardoso],
Optimized Deep Learning Architecture for the Diagnosis of Pneumonia Through Chest X-Rays,
ICIAR19(II:353-361).
Springer DOI 1909
BibRef

Murray, V.[Victor], Pattichis, M.S.[Marios S.], Davis, H.[Herbert], Barriga, E.S.[Eduardo S.], Soliz, P.[Peter],
Multiscale AM-FM analysis of pneumoconiosis x-ray images,
ICIP09(4201-4204).
IEEE DOI 0911
BibRef

Tong, X.[Xiaoou], Tao, D.C.[Da-Cheng], Antonio, G.E.,
Texture classification of SARS infected region in radiographic image,
ICIP04(V: 2941-2944).
IEEE DOI 0505
BibRef

Pattichis, M.S., Pattichis, C.S., Christodoulou, C.I., James, D., Ketai, L., Soliz, P.,
A screening system for the assessment of opacity profusion in chest radiographs of miners with pneumoconiosis,
Southwest02(130-133).
IEEE Top Reference. 0208
BibRef

Chen, X.[Xuan], Hasegawa, J.I., Toriwaki, J.I.,
Quantitative diagnosis of pneumoconiosis based on recognition of small rounded opacities in chest X-ray images,
ICPR88(I: 462-464).
IEEE DOI 8811
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
COVID, Lung Analyusis .


Last update:Oct 6, 2025 at 14:07:43