Pattichis, M.S.,
Cacoullos, T.,
Soliz, P.[Peter],
New models for region of interest reader classification analysis in
chest radiographs,
PR(42), No. 6, June 2009, pp. 1058-1066.
Elsevier DOI
0902
Region of interest classification; Chest radiographs; ROC analysis;
Binary classification; Pneumoconiosis; Modeling biomedical systems;
Logic, set theory, and algebra; Mathematical procedures and computer
techniques
BibRef
Zhao, W.[Wei],
Xu, R.[Rui],
Hirano, Y.S.[Yasu-Shi],
Tachibana, R.[Rie],
Kido, S.[Shoji],
Suganuma, N.[Narufumi],
Classification of Pneumoconiosis on HRCT Images for Computer-Aided
Diagnosis,
IEICE(E96-D), No. 4, April 2013, pp. 836-844.
WWW Link.
1304
BibRef
Wang, Y.[Ying],
Waylen, P.R.[Peter R.],
Mao, L.[Liang],
Modeling Properties of Influenza-Like Illness Peak Events with
Crossing Theory,
IJGI(3), No. 2, 2014, pp. 764-780.
DOI Link
1407
BibRef
Dey, N.[Nilanjan],
Zhang, Y.D.[Yu-Dong],
Rajinikanth, V.,
Pugalenthi, R.,
Raja, N.S.M.[N. Sri Madhava],
Customized VGG19 Architecture for Pneumonia Detection in Chest X-Rays,
PRL(143), 2021, pp. 67-74.
Elsevier DOI
2102
Chest X-Ray, Pneumonia, VGG19 Architecture, Deep-Learning,
Ensemble Feature Scheme
BibRef
Akgundogdu, A.[Abdurrahim],
Detection of pneumonia in chest X-ray images by using 2D discrete
wavelet feature extraction with random forest,
IJIST(31), No. 1, 2021, pp. 82-93.
DOI Link
2102
image classification, machine learning, pneumonia,
random forest, wavelet
BibRef
Samulowska, M.[Marta],
Chmielewski, S.[Szymon],
Raczko, E.[Edwin],
Lupa, M.[Michal],
Myszkowska, D.[Dorota],
Zagajewski, B.[Bogdan],
Crowdsourcing without Data Bias: Building a Quality Assurance System
for Air Pollution Symptom Mapping,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Hu, J.L.[Jin-Long],
Xu, S.H.[Song-Hua],
Ding, X.D.[Xiang-Dong],
A Triplet network framework based automatic assessment of simulation
quality for respiratory droplet propagation,
PR(119), 2021, pp. 108060.
Elsevier DOI
2108
Simulation quality assessment,
Respiratory droplet propagation, Triplet network, Attentive temporal pooling
BibRef
Islam, S.R.[Sheikh Rafiul],
Maity, S.P.[Santi P.],
Ray, A.K.[Ajoy Kumar],
Mandal, M.[Mrinal],
Deep learning on compressed sensing measurements in pneumonia
detection,
IJIST(32), No. 1, 2022, pp. 41-54.
DOI Link
2201
autoencoder, CNN, compressed sensing, deep learning, pneumonia detection
BibRef
Ben Atitallah, S.[Safa],
Driss, M.[Maha],
Boulila, W.[Wadii],
Koubaa, A.[Anis],
Ben Ghézala, H.[Henda],
Fusion of convolutional neural networks based on Dempster-Shafer
theory for automatic pneumonia detection from chest X-ray images,
IJIST(32), No. 2, 2022, pp. 658-672.
DOI Link
2203
convolutional neural networks, deep learning,
Dempster-Shafer theory, evidence-based fusion,
transfer learning
BibRef
Bodasingi, N.[Nalini],
Balaji, N.[Narayanam],
Jammu, B.R.[Bhaskara Rao],
Automatic diagnosis of pneumonia using backward elimination method
based SVM and its hardware implementation,
IJIST(32), No. 3, 2022, pp. 1000-1014.
DOI Link
2205
backward elimination method, chest X-ray, support vector machine
BibRef
Sanchez, K.[Karen],
Hinojosa, C.[Carlos],
Arguello, H.[Henry],
Kouamé, D.[Denis],
Meyrignac, O.[Olivier],
Basarab, A.[Adrian],
CX-DaGAN: Domain Adaptation for Pneumonia Diagnosis on a Small Chest
X-Ray Dataset,
MedImg(41), No. 11, November 2022, pp. 3278-3288.
IEEE DOI
2211
Pulmonary diseases, X-ray imaging, Medical diagnostic imaging,
Deep learning, Training, X-rays, Lung, Chest X-ray, deep learning,
pneumonia diagnosis
BibRef
Han, Z.Y.[Zhong-Yi],
Gui, X.J.[Xian-Jin],
Sun, H.L.[Hao-Liang],
Yin, Y.L.[Yi-Long],
Li, S.[Shuo],
Towards Accurate and Robust Domain Adaptation Under Multiple Noisy
Environments,
PAMI(45), No. 5, May 2023, pp. 6460-6479.
IEEE DOI
2304
Noise measurement, Task analysis, COVID-19, Training,
Machine learning algorithms, X-ray imaging, Supervised learning,
non-stationary environments
BibRef
Ewaidat, H.A.[Haytham Al],
Balawi, S.[Sara],
Bataineh, Z.[Ziad],
Al-Dwairi, A.[Ahmed],
Al-Khalily, M.[Majd],
Azez, K.A.[Khalaf Abdel],
Almakhadmeh, A.[Ali],
Establishment of national diagnostic reference levels as guidelines
for computed tomography radiation in Jordan,
IJIST(33), No. 4, 2023, pp. 1223-1234.
DOI Link
2307
CT scan, CTDIv, diagnostic reference levels
BibRef
Yan, N.[Nan],
Tao, Y.[Ye],
Pneumonia X-ray detection with anchor-free detection framework and
data augmentation,
IJIST(33), No. 4, 2023, pp. 1235-1246.
DOI Link
2307
anchor-free detection framework, computer-aided diagnosis,
data augmentation, pneumonia detection
BibRef
Madan, S.[Shipra],
Chaudhury, S.[Santanu],
Gandhi, T.K.[Tapan Kumar],
Explainable few-shot learning with visual explanations on a low
resource pneumonia dataset,
PRL(176), 2023, pp. 109-116.
Elsevier DOI
2312
Explainable few-shot learning, Medical image analysis,
Back-propagation, Pneumonia, Chest x-ray
BibRef
Singh, P.[Pritpal],
Huang, Y.P.[Yo-Ping],
An Ambiguous Edge Detection Method for Computed Tomography Scans of
Coronavirus Disease 2019 Cases,
SMCS(54), No. 1, January 2024, pp. 352-364.
IEEE DOI
2312
BibRef
Islam, M.K.[Md Khairul],
Rahman, M.M.[Md Mahbubur],
Ali, M.S.[Md Shahin],
Mahim, S.M.,
Miah, M.S.[Md Sipon],
Enhancing lung abnormalities diagnosis using hybrid DCNN-ViT-GRU
model with explainable AI: A deep learning approach,
IVC(142), 2024, pp. 104918.
Elsevier DOI
2402
Lung cancer, COVID-19, Pre-processing, Feature extraction,
DCNN-ViT-GRU, Explainable AI
BibRef
Wu, H.[Huisi],
Zhang, B.M.[Bai-Ming],
Chen, C.[Cheng],
Qin, J.[Jing],
Federated Semi-Supervised Medical Image Segmentation via
Prototype-Based Pseudo-Labeling and Contrastive Learning,
MedImg(43), No. 2, February 2024, pp. 649-661.
IEEE DOI Code:
WWW Link.
2402
Data models, Biomedical imaging, Prototypes, Training,
Distributed databases, Servers, COVID-19, Federated learning,
medical imaging segmentation
BibRef
Xie, J.S.[Jun-Song],
Wu, Q.[Qian],
Zhu, R.[Renju],
Entropy-guided contrastive learning for semi-supervised medical image
segmentation,
IET-IPR(18), No. 2, 2024, pp. 312-326.
DOI Link
2402
contrastive learning, Covid-19, entropy-guided,
medical image segmentation, semi-supervised learning
BibRef
Kordnoori, S.[Shirin],
Sabeti, M.[Maliheh],
Mostafaei, H.[Hamidreza],
Banihashemi, S.S.A.[Saeed Seyed Agha],
Advances in medical image analysis:
A comprehensive survey of lung infection detection,
IET-IPR(18), No. 13, 2024, pp. 3750-3800.
DOI Link
2411
image classification, image segmentation, lung, medical image processing
BibRef
Dong, A.[Aimei],
Liu, J.[Jian],
Lv, G.H.[Guo-Hua],
Cheng, J.Y.[Jin-Yong],
GLMR-Net: Global-to-local mutually reinforcing network for pneumonia
segmentation and classification,
PR(162), 2025, pp. 111371.
Elsevier DOI
2503
Pneumonia, Segmentation, Classification, Global-to-local,
Mutual reinforcement, CT images
BibRef
Huang, J.H.[Jin-Hui],
DSSViT: Multi-Scale Adaptive Fusion Vision Transformer With Dense
Feature Reuse for Robust Pneumonia Detection in Chest Radiography,
IJIST(35), No. 3, 2025, pp. e70127.
DOI Link
2506
attention mechanism, convolutional neural networks (CNN),
dense-SEA VIT (DSSVIT), image classification, vision transformer (VIT)
BibRef
He, H.[Huiyao],
Zhan, Y.W.[Yin-Wei],
Yan, Y.L.[Yu-Lan],
Zhan, Y.[Yuefu],
Enhancing 3D Global and Local Feature Extraction for Pneumonia
Multilesion Segmentation,
IJIST(35), No. 3, 2025, pp. e70083.
DOI Link
2506
deap learning, Mamba-based segmentation, pneumonia multilesion segmentation
BibRef
Shea, D.E.[Daniel E.],
Kulhare, S.[Sourabh],
Millin, R.[Rachel],
Laverriere, Z.[Zohreh],
Mehanian, C.[Courosh],
Delahunt, C.B.[Charles B],
Banik, D.[Dipayan],
Zheng, X.L.[Xin-Liang],
Zhu, M.[Meihua],
Ji, Y.[Ye],
Ostbye, T.[Travis],
Mehanian, M.M.S.[Martha-Marie S],
Uwajeh, A.[Atinuke],
Akinsete, A.M.[Adeseye M.],
Wang, F.[Fen],
Horning, M.P.[Matthew P.],
Deep Learning Video Classification of Lung Ultrasound Features
Associated with Pneumonia,
DL-UIA23(3103-3112)
IEEE DOI
2309
BibRef
Weninger, L.[Leon],
Romanzetti, S.[Sandro],
Ebert, J.[Julia],
Reetz, K.[Kathrin],
Merhof, D.[Dorit],
Harmonization of Diffusion MRI Data Obtained with Multiple Head Coils
Using Hybrid Cnns,
MIA-COVID19D22(385-396).
Springer DOI
2304
BibRef
Nakhli, R.[Ramin],
Darbandsari, A.[Amirali],
Farahani, H.[Hossein],
Bashashati, A.[Ali],
CCRL: Contrastive Cell Representation Learning,
MIA-COVID19D22(397-407).
Springer DOI
2304
BibRef
Bruton, J.,
Wang, H.,
Translated Skip Connections: Expanding the Receptive Fields of Fully
Convolutional Neural Networks,
ICIP22(631-635)
IEEE DOI
2211
COVID-19, Image segmentation, Convolution, Neural networks,
Object segmentation, Benchmark testing, skip connections,
dilated convolution
BibRef
Zhu, X.Y.[Xiao-Yu],
Chen, J.[Jeffrey],
Zeng, X.[Xiangrui],
Liang, J.W.[Jun-Wei],
Li, C.Q.[Cheng-Qi],
Liu, S.[Sinuo],
Behpour, S.[Sima],
Xu, M.[Min],
Weakly Supervised 3D Semantic Segmentation Using Cross-Image
Consensus and Inter-Voxel Affinity Relations,
ICCV21(2814-2824)
IEEE DOI
2203
COVID-19, Image segmentation, Solid modeling, Microscopy, Semantics,
Integral equations, Medical, biological, and cell microscopy,
grouping and shape
BibRef
Cao, J.W.[Jia-Wang],
Jiang, L.[Lulu],
Hou, J.L.[Jun-Lin],
Jiang, L.Q.[Long-Quan],
Zhao, R.[Ruiwei],
Shi, W.Y.[Wei-Ya],
Shan, F.[Fei],
Feng, R.[Rui],
Exploiting Deep Cross-Slice Features from CT Images for Multi-Class
Pneumonia Classification,
ICIP21(205-209)
IEEE DOI
2201
COVID-19, Deep learning, Computed tomography, Pulmonary diseases,
Image processing, Imaging, CT image, cross-slice features,
context-aware Bi-LSTM
BibRef
Panicker, M.R.[Mahesh Raveendranatha],
Chen, Y.T.[Yale Tung],
Gayathri, M.,
Madhavanunni, N.A.,
Narayan, K.V.[Kiran Vishnu],
Kesavadas, C.,
Vinod, A.P.,
Employing Acoustic Features To Aid Neural Networks Towards Platform
Agnostic Learning In Lung Ultrasound Imaging,
ICIP21(170-174)
IEEE DOI
2201
COVID-19, Ultrasonic imaging, Neural networks, Lung, Imaging, Tools,
Feature extraction, COVID-19, Lung Ultrasound, Pleura Detection,
Neural Networks
BibRef
Prabhushankar, M.[Mohit],
AlRegib, G.[Ghassan],
Extracting Causal Visual Features for Limited Label Classification,
ICIP21(3697-3701)
IEEE DOI
2201
Measurement, COVID-19, Visualization, Image coding,
Computed tomography, Neural networks, Visual Causality,
Causal metrics
BibRef
Wang, D.D.[Da-Dong],
Arzhaeva, Y.[Yulia],
Devnath, L.[Liton],
Qiao, M.Y.[Mao-Ying],
Amirgholipour, S.[Saeed],
Liao, Q.Y.[Qi-Yu],
McBean, R.[Rhiannon],
Hillhouse, J.[James],
Luo, S.[Suhuai],
Meredith, D.[David],
Newbigin, K.[Katrina],
Yates, D.[Deborah],
Automated Pneumoconiosis Detection on Chest X-Rays Using Cascaded
Learning with Real and Synthetic Radiographs,
DICTA20(1-6)
IEEE DOI
2201
Training, Sensitivity, Computational modeling, Pulmonary diseases,
Lung, X-rays, Diagnostic radiography, pneumoconiosis, deep learning,
black lung
BibRef
Tartaglione, E.[Enzo],
Barbano, C.A.[Carlo Alberto],
Grangetto, M.[Marco],
EnD: Entangling and Disentangling deep representations for bias
correction,
CVPR21(13503-13512)
IEEE DOI
2111
Training, COVID-19, Radiography, Deep learning,
Training data, Data models
BibRef
Prasad, S.[Shitala],
Lin, D.Y.[Dong-Yun],
Li, Y.Q.[Yi-Qun],
Sheng, D.[Dong],
Min, O.Z.[Oo Zaw],
Rethinking of Deep Models Parameters with Respect to Data
Distribution,
ICPR21(8562-8569)
IEEE DOI
2105
Training, Deep learning, COVID-19, Image segmentation, Annotations,
Object detection, Data models
BibRef
Xu, R.[Rui],
Wang, Y.[Yi],
Liu, T.T.[Tian-Tian],
Ye, X.C.[Xin-Chen],
Lin, L.[Lin],
Chen, Y.W.[Yen-Wei],
Kido, S.[Shoji],
Tomiyama, N.[Noriyuki],
BG-Net: Boundary-Guided Network for Lung Segmentation on Clinical CT
Images,
ICPR21(8782-8788)
IEEE DOI
2105
COVID-19, Deep learning, Image segmentation, Hospitals,
Computed tomography, Pulmonary diseases, Lung, Lung Segmentation,
CT Images
BibRef
Buongiorno, R.[Rossana],
Germanese, D.[Danila],
Romei, C.[Chiara],
Tavanti, L.[Laura],
de Liperi, A.[Annalisa],
Colantonio, S.[Sara],
UIP-Net: A Decoder-encoder CNN for the Detection and Quantification of
Usual Interstitial Pneumoniae Pattern in Lung CT Scan Images,
AIHA20(389-405).
Springer DOI
2103
BibRef
Gabruseva, T.,
Poplavskiy, D.,
Kalinin, A.,
Deep Learning for Automatic Pneumonia Detection,
WiCV20(1436-1443)
IEEE DOI
2008
Lung, Diseases, Training, X-ray imaging, Diagnostic radiography,
Measurement, Predictive models
BibRef
Sousa, G.G.B.[Gabriel Garcez Barros],
Fernandes, V.R.M.[Vandécia Rejane Monteiro],
de Paiva, A.C.[Anselmo Cardoso],
Optimized Deep Learning Architecture for the Diagnosis of Pneumonia
Through Chest X-Rays,
ICIAR19(II:353-361).
Springer DOI
1909
BibRef
Murray, V.[Victor],
Pattichis, M.S.[Marios S.],
Davis, H.[Herbert],
Barriga, E.S.[Eduardo S.],
Soliz, P.[Peter],
Multiscale AM-FM analysis of pneumoconiosis x-ray images,
ICIP09(4201-4204).
IEEE DOI
0911
BibRef
Tong, X.[Xiaoou],
Tao, D.C.[Da-Cheng],
Antonio, G.E.,
Texture classification of SARS infected region in radiographic image,
ICIP04(V: 2941-2944).
IEEE DOI
0505
BibRef
Pattichis, M.S.,
Pattichis, C.S.,
Christodoulou, C.I.,
James, D.,
Ketai, L.,
Soliz, P.,
A screening system for the assessment of opacity profusion in chest
radiographs of miners with pneumoconiosis,
Southwest02(130-133).
IEEE Top Reference.
0208
BibRef
Chen, X.[Xuan],
Hasegawa, J.I.,
Toriwaki, J.I.,
Quantitative diagnosis of pneumoconiosis based on recognition of small
rounded opacities in chest X-ray images,
ICPR88(I: 462-464).
IEEE DOI
8811
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
COVID, Lung Analyusis .