Evans, W.E.[William E.],
Viezee, W.[William],
Visibility monitor employing television camera,
US_Patent4,216,498, Aug 5, 1980
WWW Link.
BibRef
8008
Kwon, T.M.[Taek Mu],
Video camera-based visibility measurement system,
US_Patent6,853,453, Feb 8, 2005
WWW Link.
BibRef
0502
And:
US_Patent7,016,045, Mar 21, 2006
WWW Link.
BibRef
Hautière, N.[Nicolas],
Labayrade, R.,
Aubert, D.[Didier],
Real-Time Disparity Contrast Combination for Onboard Estimation of the
Visibility Distance,
ITS(7), No. 2, June 2006, pp. 201-212.
IEEE DOI
0606
BibRef
Hautiere, N.[Nicolas],
Labayrade, R.[Raphaël],
Aubert, D.[Didier],
Estimation of the Visibility Distance by Stereovision:
A Generic Approach,
IEICE(E89-D), No. 7, July 2006, pp. 2084-2091.
DOI Link
0607
BibRef
Hautière, N.[Nicolas],
Aubert, D.[Didier],
Visible Edges Thresholding: a HVS based Approach,
ICPR06(II: 155-158).
IEEE DOI
0609
Is it visible to human eye?
BibRef
Hautiére, N.[Nicolas],
Tarel, J.P.[Jean-Philippe],
Lavenant, J.[Jean],
Aubert, D.[Didier],
Automatic fog detection and estimation of visibility distance
through use of an onboard camera,
MVA(17), No. 1, April 2006, pp. 8-20.
Springer DOI
0604
BibRef
Hautiere, N.[Nicolas],
Tarel, J.P.[Jean-Philippe],
Aubert, D.[Didier],
Towards Fog-Free In-Vehicle Vision Systems through Contrast Restoration,
CVPR07(1-8).
IEEE DOI
0706
BibRef
Hautiere, N.,
Labayrade, R.,
Perrollaz, M.,
Aubert, D.,
Road Scene Analysis by Stereovision: a Robust and Quasi-Dense Approach,
ICARCV06(1-6).
IEEE DOI
0612
BibRef
Hautiere, N.[Nicolas],
Boubezoul, A.[Abderrahmane],
Combination of Roadside and In-vehicle Sensors for Extensive Visibility
Range Monitoring,
AVSBS09(388-393).
IEEE DOI
0909
BibRef
Pöchmüller, W.[Werner],
Kuehnle, G.[Goetz],
Method for determining visibility,
US_Patent7,274,386, Sep 25, 2007
WWW Link. 2 sensors, ration of contrast.
BibRef
0709
Treibitz, T.[Tali],
Schechner, Y.Y.[Yoav Y.],
Active Polarization Descattering,
PAMI(31), No. 3, March 2009, pp. 385-399.
IEEE DOI
0902
BibRef
Earlier:
Instant 3Descatter,
CVPR06(II: 1861-1868).
IEEE DOI
0606
Nonscanning method that uses active illumination. Range limits due
to illumination. Underwater application also.
Remove the scattering in fog, etc.
BibRef
Hautiere, N.,
Tarel, J.P.,
Aubert, D.,
Mitigation of Visibility Loss for Advanced Camera-Based Driver
Assistance,
ITS(11), No. 2, June 2010, pp. 474-484.
IEEE DOI
1007
BibRef
Gallen, R.[Romain],
Hautière, N.[Nicolas],
Dumont, E.[Eric],
Static Estimation of the Meteorological Visibility Distance in Night
Fog with Imagery,
IEICE(E93-D), No. 7, July 2010, pp. 1780-1787.
WWW Link.
1008
BibRef
Earlier:
MVA09(300-).
PDF File.
0905
BibRef
Tripathi, A.K.[Abhishek Kumar],
Mukhopadhyay, S.[Sudipta],
Single image fog removal using anisotropic diffusion,
IET-IPR(6), No. 7, 2012, pp. 966-975.
DOI Link
1211
BibRef
Tripathi, A.K.[Abhishek Kumar],
Mukhopadhyay, S.[Sudipta],
Efficient fog removal from video,
SIViP(8), No. 8, November 2014, pp. 1431-1439.
WWW Link.
1411
BibRef
Huang, S.C.[Shih-Chia],
Chen, B.H.[Bo-Hao],
Cheng, Y.J.[Yi-Jui],
An Efficient Visibility Enhancement Algorithm for Road Scenes
Captured by Intelligent Transportation Systems,
ITS(15), No. 5, October 2014, pp. 2321-2332.
IEEE DOI
1410
image colour analysis
BibRef
Gallen, R.,
Cord, A.,
Hautiere, N.,
Dumont, E.,
Aubert, D.,
Nighttime Visibility Analysis and Estimation Method in the Presence
of Dense Fog,
ITS(16), No. 1, February 2015, pp. 310-320.
IEEE DOI
1502
Cameras
BibRef
Negru, M.,
Nedevschi, S.,
Peter, R.I.,
Exponential Contrast Restoration in Fog Conditions for Driving
Assistance,
ITS(16), No. 4, August 2015, pp. 2257-2268.
IEEE DOI
1508
Atmospheric modeling
BibRef
Choi, L.K.[Lark Kwon],
You, J.[Jaehee],
Bovik, A.C.,
Referenceless Prediction of Perceptual Fog Density and Perceptual
Image Defogging,
IP(24), No. 11, November 2015, pp. 3888-3901.
IEEE DOI
1509
BibRef
Earlier:
Referenceless perceptual image defogging,
Southwest14(165-168)
IEEE DOI
1406
fog.
image enhancement
BibRef
Yi, L.[Li],
Thies, B.[Boris],
Zhang, S.[Suping],
Shi, X.M.[Xiao-Meng],
Bendix, J.[Jörg],
Optical Thickness and Effective Radius Retrievals of Low Stratus and
Fog from MTSAT Daytime Data as a Prerequisite for Yellow Sea Fog
Detection,
RS(8), No. 1, 2016, pp. 8.
DOI Link
1602
BibRef
Li, Y.,
Hoogeboom, P.,
Russchenberg, H.W.J.,
A Novel Radar-Based Visibility Estimator,
GeoRS(55), No. 6, June 2017, pp. 3150-3168.
IEEE DOI
1706
Attenuation, Clouds, Estimation, Radar antennas, Radar measurements,
Radar remote sensing, Attenuation, drop size distribution (DSD),
estimation method, fog, millimeter-wave radar, reflection,
visibility, (Vis)
BibRef
Chu, W.T.[Wei-Ta],
Zheng, X.Y.[Xiang-You],
Ding, D.S.[Ding-Shiuan],
Camera as weather sensor:
Estimating weather information from single images,
JVCIR(46), No. 1, 2017, pp. 233-249.
Elsevier DOI
1706
Cross-platform, data, association
BibRef
Jiang, Y.,
Sun, C.,
Zhao, Y.,
Yang, L.,
Fog Density Estimation and Image Defogging Based on Surrogate
Modeling for Optical Depth,
IP(26), No. 7, July 2017, pp. 3397-3409.
IEEE DOI
1706
Adaptive optics, Atmospheric modeling, Feature extraction,
Optical imaging, Optical saturation, Optical scattering,
Optical sensors, Fog, defog, fog density, optical depth, surrogate, model
BibRef
Jia, Y.H.[Yu-Han],
Wu, J.P.[Jian-Ping],
Ben-Akiva, M.[Moshe],
Seshadri, R.[Ravi],
Du, Y.[Yiman],
Rainfall-integrated traffic speed prediction using deep learning method,
IET-ITS(11), No. 9, November 2017, pp. 531-536.
DOI Link
1710
BibRef
Jeong, K.[Kyeongmin],
Choi, K.Y.[Kwang-Yeon],
Kim, D.[Donghwan],
Song, B.C.[Byung Cheol],
Fast Fog Detection for De-Fogging of Road Driving Images,
IEICE(E101-D), No. 2, February 2018, pp. 473-480.
WWW Link.
1802
BibRef
Kim, K.[Kyungil],
Kim, S.[Soohyun],
Kim, K.S.[Kyung-Soo],
Effective image enhancement techniques for fog-affected indoor and
outdoor images,
IET-IPR(12), No. 4, April 2018, pp. 465-471.
DOI Link
1804
BibRef
Liu, J.L.[Jian-Lei],
Visibility distance estimation in foggy situations and single image
dehazing based on transmission computation model,
IET-IPR(12), No. 7, July 2018, pp. 1237-1244.
DOI Link
1806
BibRef
Wang, Z.[Zheng],
Zheng, R.C.[Ren-Cheng],
Kaizuka, T.[Tsutomu],
Nakano, K.[Kimihiko],
Influence of haptic guidance on driving behaviour under degraded visual
feedback conditions,
IET-ITS(12), No. 6, August 2018, pp. 454-462.
DOI Link
1807
BibRef
Gao, Y.[Yin],
Su, Y.J.[Yi-Jing],
Li, Q.M.[Qi-Ming],
Li, J.[Jun],
Single Fog Image Restoration with Multi-Focus Image Fusion,
JVCIR(55), 2018, pp. 586-595.
Elsevier DOI
1809
Image restoration, Histogram analysis,
Adaptive boundary constraint, Multi-focus image fusion
BibRef
Pei, L.[Liu],
Yuan, X.[Xue],
Dai, X.R.[Xue-Rui],
MWNet: object detection network applicable for different weather
conditions,
IET-ITS(13), No. 9, September 2019, pp. 1394-1400.
DOI Link
1908
BibRef
Sarkar, M.[Manas],
Sarkar, P.R.[Priyanka Rakshit],
Mondal, U.[Ujjwal],
Nandi, D.[Debashis],
Empirical wavelet transform-based fog removal via dark channel prior,
IET-IPR(14), No. 6, 11 May 2020, pp. 1170-1179.
DOI Link
2005
BibRef
Weston, M.[Michael],
Temimi, M.[Marouane],
Application of a Nighttime Fog Detection Method Using SEVIRI Over an
Arid Environment,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Sakaridis, C.[Christos],
Dai, D.X.[Deng-Xin],
Van Gool, L.J.[Luc J.],
Semantic Foggy Scene Understanding with Synthetic Data,
IJCV(126), No. 9, September 2018, pp. 973-992.
Springer DOI
1809
BibRef
And:
ACDC: The Adverse Conditions Dataset with Correspondences for
Semantic Driving Scene Understanding,
ICCV21(10745-10755)
IEEE DOI
2203
Dataset, Haze. Not just dehazing, actually understand the scene.
Training, Image segmentation, Visualization, Rain, Snow, Semantics,
Datasets and evaluation, Scene analysis and understanding,
Vision for robotics and autonomous vehicles
BibRef
Dai, D.X.[Deng-Xin],
Sakaridis, C.[Christos],
Hecker, S.[Simon],
Van Gool, L.J.[Luc J.],
Curriculum Model Adaptation with Synthetic and Real Data for Semantic
Foggy Scene Understanding,
IJCV(128), No. 5, May 2020, pp. 1182-1204.
Springer DOI
2005
BibRef
Earlier: A2, A1, A3, A4:
Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy
Scene Understanding,
ECCV18(XIII: 707-724).
Springer DOI
1810
BibRef
Han, J.H.[Ji-Hye],
Suh, M.S.[Myoung-Seok],
Yu, H.Y.[Ha-Yeong],
Roh, N.Y.[Na-Young],
Development of Fog Detection Algorithm Using GK2A/AMI and Ground Data,
RS(12), No. 19, 2020, pp. xx-yy.
DOI Link
2010
BibRef
Dev Roy, S.,
Kanti Bhowmik, M.,
Annotation and Benchmarking of a Video Dataset under Degraded Complex
Atmospheric Conditions and Its Visibility Enhancement Analysis for
Moving Object Detection,
CirSysVideo(31), No. 3, March 2021, pp. 844-862.
IEEE DOI
2103
Object detection, Atmospheric modeling, Benchmark testing,
Lighting, Rain, Atmospheric/weather conditions,
performance evaluation
BibRef
Dev Roy, S.,
Kanti Bhowmik, M.,
Oakley, J.,
A Ground Truth Annotated Video Dataset for Moving Object Detection in
Degraded Atmospheric Outdoor Scenes,
ICIP18(1318-1322)
IEEE DOI
1809
Dataset, Object Detection. Object detection, Lighting, Meteorology, Cameras, Image restoration,
Streaming media, Atmospheric measurements, Image Enhancement
BibRef
Mehra, A.[Aryan],
Mandal, M.[Murari],
Narang, P.[Pratik],
Chamola, V.[Vinay],
ReViewNet: A Fast and Resource Optimized Network for Enabling Safe
Autonomous Driving in Hazy Weather Conditions,
ITS(22), No. 7, July 2021, pp. 4256-4266.
IEEE DOI
2107
BibRef
And:
Correction:
ITS(23), No. 3, March 2022, pp. 2888-2888.
IEEE DOI
2203
Image color analysis, Atmospheric modeling, Autonomous vehicles,
Task analysis, Scattering, Meteorology, Vehicular vision, dehazing,
lightweight
BibRef
Du, P.[Pei],
Zeng, Z.[Zhe],
Zhang, J.W.[Jing-Wei],
Liu, L.[Lu],
Yang, J.C.[Jian-Chang],
Qu, C.P.[Chuan-Ping],
Jiang, L.[Li],
Liu, S.W.[Shan-Wei],
Fog Season Risk Assessment for Maritime Transportation Systems
Exploiting Himawari-8 Data: A Case Study in Bohai Sea, China,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Zhang, L.[Lin],
Zhu, A.[Anqi],
Zhao, S.Y.[Shi-Yu],
Zhou, Y.C.[Yi-Cong],
Simulation of Atmospheric Visibility Impairment,
IP(30), 2021, pp. 8713-8726.
IEEE DOI
2110
Atmospheric modeling, Computational modeling, Simulation, Games,
Annotations, Focusing, Engines, Atmospheric visibility impairment,
synthetic datasets
BibRef
Guo, X.F.[Xiao-Fei],
Wan, J.H.[Jian-Hua],
Liu, S.W.[Shan-Wei],
Xu, M.M.[Ming-Ming],
Sheng, H.[Hui],
Yasir, M.[Muhammad],
A scSE-LinkNet Deep Learning Model for Daytime Sea Fog Detection,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ye, J.[Jin],
Liu, L.[Lei],
Wu, Y.[Yi],
Yang, W.Y.[Wan-Ying],
Ren, H.[Hong],
Using Machine Learning Algorithm to Detect Blowing Snow and Fog in
Antarctica Based on Ceilometer and Surface Meteorology Systems,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Liao, L.[Liang],
Chen, W.[Wenyi],
Xiao, J.[Jing],
Wang, Z.[Zheng],
Lin, C.W.[Chia-Wen],
Satoh, S.[Shin'ichi],
Unsupervised Foggy Scene Understanding via Self Spatial-Temporal
Label Diffusion,
IP(31), 2022, pp. 3525-3540.
IEEE DOI
2205
Semantics, Adaptation models, Image segmentation, Training,
Meteorology, Data models, Atmospheric modeling, Label diffusion,
unsupervised domain adaptation
BibRef
Guo, Y.[Ying],
Liang, R.L.[Rui-Lin],
Cui, Y.K.[You-Kai],
Zhao, X.M.[Xiang-Mo],
Meng, Q.[Qiang],
A domain-adaptive method with cycle perceptual consistency
adversarial networks for vehicle target detection in foggy weather,
IET-ITS(16), No. 7, 2022, pp. 971-981.
DOI Link
2206
BibRef
Liu, Z.[Ze],
Cai, Y.F.[Ying-Feng],
Wang, H.[Hai],
Chen, L.[Long],
Gao, H.B.[Hong-Bo],
Jia, Y.[Yunyi],
Li, Y.C.[Yi-Cheng],
Robust Target Recognition and Tracking of Self-Driving Cars With
Radar and Camera Information Fusion Under Severe Weather Conditions,
ITS(23), No. 7, July 2022, pp. 6640-6653.
IEEE DOI
2207
Cameras, Radar, Autonomous vehicles, Data integration,
Target recognition, Signal processing algorithms, Sensors,
self-driving cars
BibRef
Blin, R.[Rachel],
Ainouz, S.[Samia],
Canu, S.[Stéphane],
Meriaudeau, F.[Fabrice],
The PolarLITIS Dataset: Road Scenes Under Fog,
ITS(23), No. 8, August 2022, pp. 10753-10762.
IEEE DOI
2208
Roads, Meteorology, Mathematical model, Stokes parameters, Sensors,
Cameras, Autonomous vehicles, Road scene analysis,
object detection
BibRef
Yang, T.[Tao],
Li, Y.[You],
Ruichek, Y.[Yassine],
Yan, Z.[Zhi],
Performance Modeling a Near-Infrared ToF LiDAR Under Fog:
A Data-Driven Approach,
ITS(23), No. 8, August 2022, pp. 11227-11236.
IEEE DOI
2208
Laser radar, Meteorology, Measurement by laser beam, Laser modes,
Surface emitting lasers, Mathematical model, Predictive models,
autonomous driving
BibRef
Boudala, F.S.[Faisal S.],
Wu, D.[Di],
Isaac, G.A.[George A.],
Gultepe, I.[Ismail],
Seasonal and Microphysical Characteristics of Fog at a Northern
Airport in Alberta, Canada,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Li, Z.[Zhi],
Wu, X.[Xing],
Wang, J.[Jianjia],
Guo, Y.[Yike],
Weather-degraded image semantic segmentation with multi-task
knowledge distillation,
IVC(127), 2022, pp. 104554.
Elsevier DOI
2211
Adverse weather, Road scene, Knowledge distillation,
Image enhancement, Semantic segmentation
BibRef
You, J.[Jing],
Jia, S.C.[Shao-Cheng],
Pei, X.[Xin],
Yao, D.[Danya],
DMRVisNet: Deep Multihead Regression Network for Pixel-Wise
Visibility Estimation Under Foggy Weather,
ITS(23), No. 11, November 2022, pp. 22354-22366.
IEEE DOI
2212
Estimation, Meteorology, Feature extraction, Instruments,
Convolutional neural networks, Cameras, Safety, supervised learning
BibRef
Tang, Y.Z.[Yu-Zhu],
Yang, P.[Pinglv],
Zhou, Z.[Zeming],
Zhao, X.F.[Xiao-Feng],
Daytime Sea Fog Detection Based on a Two-Stage Neural Network,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Li, J.L.[Jin-Long],
Xu, R.S.[Run-Sheng],
Ma, J.[Jin],
Zou, Q.[Qin],
Ma, J.Q.[Jia-Qi],
Yu, H.K.[Hong-Kai],
Domain Adaptive Object Detection for Autonomous Driving under Foggy
Weather,
WACV23(612-622)
IEEE DOI
2302
Measurement, Training, Adaptation models, Transfer learning,
Object detection, Feature extraction, visual reasoning
BibRef
Zhang, Y.X.[Yu-Xiao],
Carballo, A.[Alexander],
Yang, H.[Hanting],
Takeda, K.[Kazuya],
Perception and sensing for autonomous vehicles under adverse weather
conditions: A survey,
PandRS(196), 2023, pp. 146-177.
Elsevier DOI
2302
Perception and sensing, Adverse weather conditions,
Autonomous driving, LiDAR, Sensor fusion, Deep learning
BibRef
Liu, F.X.[Fu-Xiang],
Zang, C.[Chen],
Li, L.[Lei],
Xu, C.F.[Chun-Feng],
Luo, J.M.[Jing-Min],
ConvNeXt-Haze: A Fog Image Classification Algorithm for Small and
Imbalanced Sample Dataset Based on Convolutional Neural Network,
IEICE(E106-D), No. 4, April 2023, pp. 488-494.
WWW Link.
2304
BibRef
Huang, S.C.[Shih-Chia],
Jaw, D.W.[Da-Wei],
Hoang, Q.V.[Quoc-Viet],
Le, T.H.[Trung-Hieu],
3FL-Net: An Efficient Approach for Improving Performance of
Lightweight Detectors in Rainy Weather Conditions,
ITS(24), No. 4, April 2023, pp. 4293-4305.
IEEE DOI
2304
Feature extraction, Rain, Detectors, Object detection, Meteorology,
Training, Task analysis, Object detection, lightweight detector, CNN
BibRef
Boudala, F.S.[Faisal S.],
Milbrandt, J.A.[Jason A.],
Solid Precipitation and Visibility Measurements at the Centre for
Atmospheric Research Experiments in Southern Ontario and Bratt's Lake
in Southern Saskatchewan,
RS(15), No. 16, 2023, pp. 4079.
DOI Link
2309
BibRef
Zhai, B.[Ben],
Wang, Y.L.[Yan-Li],
Wu, B.[Bing],
An ensemble learning method for low visibility prediction on freeway
using meteorological data,
IET-ITS(17), No. 11, 2023, pp. 2237-2250.
DOI Link
2311
intelligent transportation systems, prediction theory,
road safety, sustainable development
BibRef
Han, J.H.[Ji-Hye],
Suh, M.S.[Myoung-Seok],
Yu, H.Y.[Ha-Yeong],
Kim, S.H.[So-Hyeong],
Improvement of High-Resolution Daytime Fog Detection Algorithm Using
GEO-KOMPSAT-2A/Advanced Meteorological Imager Data with Optimization
of Background Field and Threshold Values,
RS(16), No. 11, 2024, pp. 2031.
DOI Link
2406
BibRef
Zhang, C.[Cheng],
Wang, H.[Hai],
Cai, Y.F.[Ying-Feng],
Chen, L.[Long],
Li, Y.C.[Yi-Cheng],
TransFusion: Multi-Modal Robust Fusion for 3D Object Detection in
Foggy Weather Based on Spatial Vision Transformer,
ITS(25), No. 9, September 2024, pp. 10652-10666.
IEEE DOI Code:
WWW Link.
2409
Laser radar, Point cloud compression, Meteorology, Radar, Cameras,
Radar imaging, 3D object detection, LiDAR
BibRef
Huang, Q.[Qin],
Zeng, P.[Peng],
Guo, X.W.[Xiao-Wei],
Lyu, J.J.[Jing-Jing],
Utilizing Machine Learning and Multi-Station Observations to
Investigate the Visibility of Sea Fog in the Beibu Gulf,
RS(16), No. 18, 2024, pp. 3392.
DOI Link
2410
BibRef
Xie, Y.M.[Yi-Ming],
Wei, H.[Henglu],
Liu, Z.[Zhenyi],
Wang, X.Y.[Xiao-Yu],
Ji, X.Y.[Xiang-Yang],
SynFog: A Photorealistic Synthetic Fog Dataset Based on End-to-End
Imaging Simulation for Advancing Real-World Defogging in Autonomous
Driving,
CVPR24(21763-21772)
IEEE DOI
2410
Atmospheric modeling, Pipelines, Lighting, Light scattering,
Rendering (computer graphics), Optics, Real-time systems
BibRef
Jang, D.G.[Dong-Gon],
Lee, S.[Sunhyeok],
Choi, G.[Gyuwon],
Lee, Y.[Yejin],
Son, S.[Sanghyeok],
Kim, D.S.[Dae-Shik],
Energy-Based Domain Adaptation Without Intermediate Domain Dataset
for Foggy Scene Segmentation,
IP(33), 2024, pp. 6143-6157.
IEEE DOI Code:
WWW Link.
2411
Training, Meteorology, Adaptation models, Radio frequency,
Semantic segmentation, Reliability, Semantics, Predictive models,
features statistics matching
BibRef
Ding, Y.N.[Yi-Ning],
Wallace, A.M.[Andrew M.],
Wang, S.[Sen],
Estimating Fog Parameters from an Image Sequence using Non-linear
Optimisation,
WACV24(i-ix)
IEEE DOI
2404
Visualization, Parameter estimation, Systematics, Estimation,
Scattering, Data collection, Image sequences, Algorithms,
Autonomous Driving
BibRef
Shin, U.[Ukcheol],
Park, J.[Jinsun],
Kweon, I.S.[In So],
Deep Depth Estimation from Thermal Image,
CVPR23(1043-1053)
IEEE DOI
2309
WWW Link. for bad weather.
BibRef
Yang, X.[Xin],
Mi, M.B.[Michael Bi],
Yuan, Y.[Yuan],
Wang, X.[Xin],
Tan, R.T.[Robby T.],
Object Detection in Foggy Scenes by Embedding Depth and Reconstruction
into Domain Adaptation,
ACCV22(VI:303-318).
Springer DOI
2307
BibRef
Yao, C.T.[Cheng-Tang],
Yu, L.D.[Li-Dong],
FoggyStereo: Stereo Matching with Fog Volume Representation,
CVPR22(13033-13042)
IEEE DOI
2210
Costs, Fuses, Stacking, Scattering, Estimation, 3D from multi-view and sensors
BibRef
Mirza, M.J.[M. Jehanzeb],
Masana, M.[Marc],
Possegger, H.[Horst],
Bischof, H.[Horst],
An Efficient Domain-Incremental Learning Approach to Drive in All
Weather Conditions,
V4AS22(3000-3010)
IEEE DOI
2210
Training, Adaptation models, Snow, Scalability, Object detection,
Task analysis, Autonomous vehicles
BibRef
Lee, S.[Sohyun],
Son, T.[Taeyoung],
Kwak, S.[Suha],
FIFO: Learning Fog-invariant Features for Foggy Scene Segmentation,
CVPR22(18889-18899)
IEEE DOI
2210
Training, Image segmentation, Visualization, Image analysis, Shape,
Filtering, Semantics, Segmentation, grouping and shape analysis,
Scene analysis and understanding
BibRef
Ma, X.Z.[Xian-Zheng],
Wang, Z.X.[Zhi-Xiang],
Zhan, Y.C.[Ya-Cheng],
Zheng, Y.Q.[Yin-Qiang],
Wang, Z.[Zheng],
Dai, D.X.[Deng-Xin],
Lin, C.W.[Chia-Wen],
Both Style and Fog Matter: Cumulative Domain Adaptation for Semantic
Foggy Scene Understanding,
CVPR22(18900-18909)
IEEE DOI
2210
Bridges, Uncertainty, Codes, Semantics, Pipelines,
Navigation and autonomous driving
BibRef
Diaz-Ruiz, C.A.[Carlos A.],
Xia, Y.Y.[You-Ya],
You, Y.R.[Yu-Rong],
Nino, J.[Jose],
Chen, J.[Junan],
Monica, J.[Josephine],
Chen, X.Y.[Xiang-Yu],
Luo, K.[Katie],
Wang, Y.[Yan],
Emond, M.[Marc],
Chao, W.L.[Wei-Lun],
Hariharan, B.[Bharath],
Weinberger, K.Q.[Kilian Q.],
Campbell, M.[Mark],
Ithaca365: Dataset and Driving Perception under Repeated and
Challenging Weather Conditions,
CVPR22(21351-21360)
IEEE DOI
2210
Point cloud compression, Rain, Snow, Roads, Pose estimation,
Sensor systems and applications, Datasets and evaluation,
Vision applications and systems
BibRef
Blin, R.[Rachel],
Ainouz, S.[Samia],
Canu, S.[Stéphane],
Meriaudeau, F.[Fabrice],
Multimodal Polarimetric and Color Fusion for Road Scene Analysis In
Adverse Weather Conditions,
ICIP21(3338-3342)
IEEE DOI
2201
Image analysis, Image color analysis, Roads, Imaging, Color,
Feature extraction, Autonomous vehicles, multimodal fusion,
deep learning.
BibRef
Musat, V.[Valentina],
Fursa, I.[Ivan],
Newman, P.[Paul],
Cuzzolin, F.[Fabio],
Bradley, A.[Andrew],
Multi-weather city: Adverse weather stacking for autonomous driving,
AVVision21(2906-2915)
IEEE DOI
2112
Training, Visualization, Stacking, Pipelines, Computer architecture,
Robustness, Sensors
BibRef
Qian, K.[Kun],
Zhu, S.L.[Shi-Lin],
Zhang, X.Y.[Xin-Yu],
Li, L.E.[Li Erran],
Robust Multimodal Vehicle Detection in Foggy Weather Using
Complementary Lidar and Radar Signals,
CVPR21(444-453)
IEEE DOI
2111
Training, Meteorological radar, Visualization, Laser radar,
Vehicle detection, Sensor phenomena and characterization, Cameras
BibRef
Fourt, O.[Olivier],
Tarel, J.P.[Jean-Philippe],
Visibility Restoration in Infra-Red Images,
ICPR21(6935-6940)
IEEE DOI
2105
Visualization, Rain, Snow, Roads, Noise reduction, Scattering, Cameras
BibRef
Yan, W.D.[Wen-Ding],
Tan, R.T.[Robby T.],
Dai, D.X.[Deng-Xin],
Nighttime Defogging Using High-low Frequency Decomposition and
Grayscale-color Networks,
ECCV20(XII: 473-488).
Springer DOI
2010
BibRef
Guan, J.,
Madani, S.,
Jog, S.,
Gupta, S.,
Hassanieh, H.,
Through Fog High-Resolution Imaging Using Millimeter Wave Radar,
CVPR20(11461-11470)
IEEE DOI
2008
Radar imaging, Millimeter wave radar, Automobiles,
Image resolution
BibRef
Yan, W.,
Sharma, A.,
Tan, R.T.,
Optical Flow in Dense Foggy Scenes Using Semi-Supervised Learning,
CVPR20(13256-13265)
IEEE DOI
2008
Optical imaging, Adaptive optics, Training, Integrated optics,
Optical variables control, Optical fiber networks, Estimation
BibRef
Bijelic, M.,
Gruber, T.,
Mannan, F.,
Kraus, F.,
Ritter, W.,
Dietmayer, K.,
Heide, F.,
Seeing Through Fog Without Seeing Fog: Deep Multimodal Sensor Fusion
in Unseen Adverse Weather,
CVPR20(11679-11689)
IEEE DOI
2008
Sensors, Laser radar, Cameras, Snow, Object detection
BibRef
Xu, X.,
Zhu, X.,
Mu, N.,
Chen, L.,
Tian, J.,
Saliency Computational Model for Foggy Images by Fusing Frequency and
Spatial Cues,
ICIP19(959-963)
IEEE DOI
1910
Saliency Computation, Frequency Domain, Spatial Domain,
Discrete Stationary Wavelet Transform, Foggy Image
BibRef
Galdran, A.,
Costa, P.,
Vazquez-Corral, J.,
Campilho, A.,
Weakly Supervised Fog Detection,
ICIP18(2875-2879)
IEEE DOI
1809
Training, Task analysis, Training data, Standards, Data models,
Predictive models, Channel estimation, Fog Detection,
Multiple-Instance Learning
BibRef
Li, K.,
Li, Y.,
You, S.,
Barnes, N.,
Photo-Realistic Simulation of Road Scene for Data-Driven Methods in
Bad Weather,
PBVDL17(491-500)
IEEE DOI
1802
Autonomous vehicles, Computational modeling,
Image color analysis, Meteorology, Rendering (computer graphics), Roads
BibRef
González-Jorge, H.,
Díaz-Vilariño, L.,
Lorenzo, H.,
Arias, P.,
Evaluation Of Driver Visibility From Mobile Lidar Data And Weather
Conditions,
ISPRS16(B1: 577-582).
DOI Link
1610
BibRef
Almazan, E.J.[Emilio J.],
Qian, Y.M.[Yi-Ming],
Elder, J.H.[James H.],
Road Segmentation for Classification of Road Weather Conditions,
CVRoads16(I: 96-108).
Springer DOI
1611
BibRef
And: A2, A1, A3:
Evaluating features and classifiers for road weather condition
analysis,
ICIP16(4403-4407)
IEEE DOI
1610
Cameras
BibRef
Alami, S.,
Ezzine, A.,
Elhassouni, F.,
Local Fog Detection Based on Saturation and RGB-Correlation,
CGiV16(1-5)
IEEE DOI
1608
correlation methods
BibRef
Li, C.[Congli],
Lu, W.J.[Wen-Jun],
Xue, S.[Song],
Shi, Y.C.[Yong-Chang],
Sun, X.N.[Xiao-Ning],
Quality assessment of polarization analysis images in foggy
conditions,
ICIP14(551-555)
IEEE DOI
1502
Feature extraction
BibRef
Kawarabuki, H.[Hiroshi],
Onoguchi, K.[Kazunori],
Snowfall Detection in a Foggy Scene,
ICPR14(877-882)
IEEE DOI
1412
Cameras
BibRef
Gibson, K.B.[Kristofor B.],
Nguyen, T.Q.[Truong Q.],
Fast single image fog removal using the adaptive Wiener filter,
ICIP13(714-718)
IEEE DOI
1402
Atmospheric modeling
BibRef
Veeramani, T.[Thangamani],
Rajagopalan, A.N.[Ambasamudram N.],
Seetharaman, G.[Guna],
Restoration of foggy and motion-blurred road scenes,
ICIP13(928-932)
IEEE DOI
1402
Cameras
BibRef
Caraffa, L.[Laurent],
Tarel, J.P.[Jean-Philippe],
Stereo Reconstruction and Contrast Restoration in Daytime Fog,
ACCV12(IV:13-25).
Springer DOI
1304
BibRef
Halmaoui, H.[Houssam],
Cord, A.[Aurelien],
Hautiere, N.[Nicolas],
Contrast restoration of road images taken in foggy weather,
CVVT11(2057-2063).
IEEE DOI
1201
BibRef
Yuan, H.Z.[Hong-Zhao],
Zhang, X.Q.[Xiu-Qiong],
Feng, Z.L.[Zi-Liang],
Horizon detection in foggy aerial image,
IASP10(191-194).
IEEE DOI
1004
BibRef
Kitayama, T.[Takashi],
Sakai, M.[Masatoshi],
Kato, T.[Takashi],
Yamada, M.[Muneo],
Nakano, T.[Tomoaki],
Yamamoto, S.[Shin],
Yamamoto, O.[Osami],
Yamanishi, M.[Masahiko],
Matsumoto, H.[Hiroshi],
On a Technique for Evaluating Performance of Wipers Based on Forward
Visibility,
MVA09(265-).
PDF File.
0905
BibRef
Hiramatsu, T.[Tomoki],
Ogawa, T.[Takahiro],
Haseyama, M.[Miki],
A Kalman filter-based approach for adaptive restoration of in-vehicle
camera foggy images,
ICIP08(3160-3163).
IEEE DOI
0810
BibRef
Ngo, H.T.[Hau T.],
Tao, L.[Li],
Zhang, M.[Ming],
Livingston, A.,
Asari, V.K.,
A Visibility Improvement System for Low Vision Drivers by Nonlinear
Enhancement of Fused Visible and Infrared Video,
VisImpaired05(III: 25-25).
IEEE DOI
0507
BibRef
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Driver Modeling, Behavior Models, Analysis .