Fdez-Vidal, X.R.[Xose R.],
Garcia, J.A.,
Fdez-Valdivia, J., and
Rodriguez-Sanchez, R.,
The Role of Integral Features for Perceiving Image Discriminability,
PRL(18), No. 8, August 1997, pp. 733-740.
9801
BibRef
Earlier:
Integral Features: A Tool for Perceiving Image Distortion,
SCIA97(xx-yy)
HTML Version.
9705
BibRef
Ryan, R.[Robert],
Baldridge, B.[Braxton],
Schowengerdt, R.A.[Robert A.],
Choi, T.Y.[Tae-Young],
Helder, D.L.[Dennis L.],
Blonski, S.[Slawomir],
IKONOS spatial resolution and image interpretability characterization,
RSE(88), No. 1-2, November 2003, pp. 37-52.
Elsevier DOI
0401
BibRef
Helder, D.L.[Dennis L.],
Coan, M.[Michael],
Patrick, K.[Kevin],
Gaska, P.[Peter],
IKONOS geometric characterization,
RSE(88), No. 1-2, November 2003, pp. 69-79.
Elsevier DOI
0401
BibRef
Arai, J.[Jun],
Okui, M.[Makoto],
Kobayashi, M.[Masaki],
Okano, F.[Fumio],
Geometrical effects of positional errors in integral photography,
JOSA-A(21), No. 6, June 2004, pp. 951-958.
DOI Link
0409
BibRef
Ong, E.,
Lin, W.,
Lu, Z.,
Yao, S.,
Etoh, M.,
Visual Distortion Assessment With Emphasis on Spatially Transitional
Regions,
CirSysVideo(14), No. 4, April 2004, pp. 559-566.
IEEE Abstract.
0407
BibRef
Lin, W.,
Dong, L.,
Xue, P.,
Visual Distortion Gauge Based on Discrimination of Noticeable Contrast
Changes,
CirSysVideo(15), No. 7, July 2005, pp. 900-909.
IEEE DOI
0508
BibRef
d'Angelo, A.,
Li, Z.P.[Zhao-Ping],
Barni, M.,
A Full-Reference Quality Metric for Geometrically Distorted Images,
IP(19), No. 4, April 2010, pp. 867-881.
IEEE DOI
1003
Quality measure addressing quality of geometric distortions.
BibRef
Saunier, S.,
Goryl, P.,
Chander, G.,
Santer, R.,
Bouvet, M.,
Collet, B.,
Mambimba, A.,
Aksakal, S.K.[S. Kocaman],
Radiometric, Geometric, and Image Quality Assessment of ALOS AVNIR-2
and PRISM Sensors,
GeoRS(48), No. 10, October 2010, pp. 3855-3866.
IEEE DOI
1003
BibRef
Dixon, M.[Michael],
Glaubius, R.[Robert],
Freeman, P.[Philip],
Plesss, R.[Robert],
Gleason, M.P.[Michael P.],
Thomas, M.M.[Matthew M.],
Smart, W.D.[William D.],
Measuring optical distortion in aircraft transparencies:
A fully automated system for quantitative evaluation,
MVA(22), No. 5, September 2011, pp. 791-804.
WWW Link.
1108
BibRef
Winkler, S.[Stefan],
Min, D.B.[Dong-Bo],
Stereo/multiview picture quality: Overview and recent advances,
SP:IC(28), No. 10, 2013, pp. 1358-1373.
Elsevier DOI
1312
Depth perception
BibRef
Tang, C.W.[Chong-Wu],
Yang, X.K.[Xiao-Kang],
Zhai, G.T.[Guang-Tao],
Image quality/distortion metric based on a-stable model similarity in
wavelet domain,
JVCIR(25), No. 7, 2014, pp. 1746-1757.
Elsevier DOI
1410
BibRef
And:
Image quality/distortion metric based on #x03B1;-stable model
similarity,
ICIP14(516-520)
IEEE DOI
1502
Databases
Image quality metric
See also Wavelet-based hybrid natural image modeling using generalized Gaussian and a-stable distributions.
BibRef
Poli, D.[Daniela],
Remondino, F.,
Angiuli, E.[Emanuele],
Agugiaro, G.,
Radiometric and geometric evaluation of GeoEye-1, WorldView-2 and
Pléiades-1A stereo images for 3D information extraction,
PandRS(100), No. 1, 2015, pp. 35-47.
Elsevier DOI
1502
Very High Resolution
BibRef
Poli, D.[Daniela],
Angiuli, E.[Emanuele],
Radiometric and geometric evaluation of worldview-2 stereo scenes.,
CGC10(188).
PDF File.
1006
BibRef
Lu, Y.,
Xie, F.,
Liu, T.,
Jiang, Z.,
Tao, D.,
No Reference Quality Assessment for Multiply-Distorted Images Based
on an Improved Bag-of-Words Model,
SPLetters(22), No. 10, October 2015, pp. 1811-1815.
IEEE DOI
1506
Correlation
BibRef
Wang, F.[Fulai],
Sun, X.[Xian],
Guo, Z.[Zhi],
Huang, Y.[Yu],
Fu, K.[Kun],
An Object-Distortion Based Image Quality Similarity,
SPLetters(22), No. 10, October 2015, pp. 1534-1537.
IEEE DOI
1506
feature extraction
BibRef
Saad, M.A.,
Corriveau, P.,
Jaladi, R.,
Objective Consumer Device Photo Quality Evaluation,
SPLetters(22), No. 10, October 2015, pp. 1516-1520.
IEEE DOI
1506
image processing
BibRef
Borcea, L.[Liliana],
Kocyigit, I.[Ilker],
Resolution Analysis of Imaging with L_1 Optimization,
SIIMS(8), No. 4, 2015, pp. 3015-3050.
DOI Link
1601
BibRef
Borcea, L.[Liliana],
Kocyigit, I.[Ilker],
Imaging in Random Media with Convex Optimization,
SIIMS(10), No. 1, 2017, pp. 147-190.
DOI Link
1704
BibRef
Sun, W.[Wen],
Zhou, F.[Fei],
Liao, Q.M.[Qing-Min],
MDID: A Multiply Distorted Image Database for Image Quality
Assessment,
PR(61), No. 1, 2017, pp. 153-168.
Elsevier DOI
1705
Dataset, Image Quality. Image database
BibRef
Liu, W.[Wei],
Zhou, F.[Fei],
Lu, T.[Tao],
Duan, J.[Jiang],
Qiu, G.P.[Guo-Ping],
Image Defogging Quality Assessment: Real-World Database and Method,
IP(30), 2021, pp. 176-190.
IEEE DOI
2011
Atmospheric modeling, Degradation, Visualization,
Image color analysis, Image quality, Measurement, Learning systems,
image quality assessment
BibRef
Zeng, J.,
Fang, L.,
Pang, J.,
Li, H.,
Wu, F.,
Subpixel Image Quality Assessment Syncretizing Local Subpixel and
Global Pixel Features,
IP(25), No. 12, December 2016, pp. 5841-5856.
IEEE DOI
1612
Distortion measurement
BibRef
Sun, W.[Wen],
Liao, Q.M.[Qing-Min],
Xue, J.H.,
Zhou, F.[Fei],
SPSIM: A Superpixel-Based Similarity Index for Full-Reference Image
Quality Assessment,
IP(27), No. 9, September 2018, pp. 4232-4244.
IEEE DOI
1807
feature extraction, gradient methods, image texture,
corresponding reference images, distorted images,
texture complexity
BibRef
Yue, G.H.[Guang-Hui],
Hou, C.P.[Chun-Ping],
Gu, K.[Ke],
Ling, N.[Nam],
Li, B.C.[Bei-Chen],
Analysis of Structural Characteristics for Quality Assessment of
Multiply Distorted Images,
MultMed(20), No. 10, October 2018, pp. 2722-2732.
IEEE DOI
1810
feature extraction, image representation, regression analysis,
support vector machines, microstructural information,
no reference (NR)
BibRef
Liang, H.Y.[Hao-Yi],
Weller, D.S.[Daniel S.],
Comparison-Based Image Quality Assessment for Selecting Image
Restoration Parameters,
IP(25), No. 11, November 2016, pp. 5118-5130.
IEEE DOI
1610
BibRef
And:
Denoising method selection by comparison-based image quality
assessment,
ICIP16(3106-3110)
IEEE DOI
1610
Distortion.
image classification
BibRef
Dai, T.[Tao],
Gu, K.[Ke],
Xu, Z.Y.[Zhi-Ya],
Tang, Q.T.[Qing-Tao],
Liang, H.Y.[Hao-Yi],
Zhang, Y.B.[Yong-Bing],
Xia, S.T.[Shu-Tao],
Blind quality assessment of multiply-distorted images based on
structural degradation,
ICIP17(171-175)
IEEE DOI
1803
Databases, Degradation, Distortion, Feature extraction, Histograms,
Image quality, Visualization, Image quality assessment (IQA),
structural degradation
BibRef
Kim, J.Y.[Jong-Yoo],
Zeng, H.[Hui],
Ghadiyaram, D.[Deepti],
Lee, S.H.[Sang-Hoon],
Zhang, L.[Lei],
Bovik, A.C.[Alan C.],
Deep Convolutional Neural Models for Picture-Quality Prediction:
Challenges and Solutions to Data-Driven Image Quality Assessment,
SPMag(34), No. 6, November 2017, pp. 130-141.
IEEE DOI
1712
Computational modeling, Data models, Distortion,
Feature extraction, Machine learning, Neural networks,
Visualization
BibRef
Yu, X.,
Bampis, C.G.,
Gupta, P.,
Bovik, A.C.,
Predicting the Quality of Images Compressed After Distortion in Two
Steps,
IP(28), No. 12, December 2019, pp. 5757-5770.
IEEE DOI
1909
Image coding, Distortion, Predictive models, Databases,
Image quality, Prediction algorithms, Social networking (online),
low quality reference image
BibRef
Wang, H.,
Fu, J.,
Lin, W.S.[Wei-Si],
Hu, S.,
Kuo, C.C.J.[C. C. Jay],
Zuo, L.,
Image Quality Assessment Based on Local Linear Information and
Distortion-Specific Compensation,
IP(26), No. 2, February 2017, pp. 915-926.
IEEE DOI
1702
computer vision
BibRef
Zhou, F.,
Yao, R.,
Liu, B.,
Qiu, G.,
Visual Quality Assessment for Super-Resolved Images:
Database and Method,
IP(28), No. 7, July 2019, pp. 3528-3541.
IEEE DOI
1906
data compression, distortion, image coding, image colour analysis,
image reconstruction, image resolution, image texture,
image super-resolution
BibRef
Wu, L.Y.[Le-Yuan],
Zhang, X.G.[Xiao-Gang],
Chen, H.[Hua],
Effective quality metric for contrast-distorted images based on SVD,
SP:IC(78), 2019, pp. 254-262.
Elsevier DOI
1909
Image contrast, Full reference, Reduced reference,
Image quality assessment, Singular value decomposition
BibRef
Jiang, Q.,
Peng, Z.,
Yang, S.,
Shao, F.,
Authentically Distorted Image Quality Assessment by Learning From
Empirical Score Distributions,
SPLetters(26), No. 12, December 2019, pp. 1867-1871.
IEEE DOI
2001
distortion, image enhancement, learning (artificial intelligence),
neural nets, vectors, image quality assessment
BibRef
Zhang, X.C.[Xiao-Ci],
Gu, N.J.[Nai-Jie],
Chang, J.[Jie],
Ye, H.[Hong],
Lin, C.W.[Chuan-Wen],
Shen, J.[Jie],
Mining discriminative spatial cues for aerial image quality
assessment towards big data,
SP:IC(80), 2020, pp. 115646.
Elsevier DOI
1912
Big data, Artificial intelligent, Data mining, Image quality assessment
BibRef
Bianco, S.[Simone],
Celona, L.[Luigi],
Napoletano, P.[Paolo],
Disentangling Image distortions in deep feature space,
PRL(148), 2021, pp. 128-135.
Elsevier DOI
2107
Image quality, Deep representations,
Convolutional neural networks, Unsupervised learning
BibRef
Jin, X.[Xin],
Zhang, L.[Li],
Shan, C.W.[Chao-Wei],
Li, X.[Xin],
Chen, Z.B.[Zhi-Bo],
Dual Prior Learning for Blind and Blended Image Restoration,
IP(31), 2022, pp. 1042-1056.
IEEE DOI
2201
Distortion, Image restoration, Nonlinear distortion,
Electronics packaging, Optical distortion, Training data, Training,
disentanglement
BibRef
Liu, J.Z.[Jian-Zhao],
Lin, J.X.[Jian-Xin],
Li, X.[Xin],
Zhou, W.[Wei],
Liu, S.[Sen],
Chen, Z.B.[Zhi-Bo],
LIRA: Lifelong Image Restoration from Unknown Blended Distortions,
ECCV20(XVIII:616-632).
Springer DOI
2012
BibRef
Sadbhawna,
Jakhetiya, V.[Vinit],
Mumtaz, D.[Deebha],
Subudhi, B.N.[Badri Narayan],
Guntuku, S.C.[Sharath Chandra],
Stretching Artifacts Identification for Quality Assessment of
3D-Synthesized Views,
IP(31), 2022, pp. 1737-1750.
IEEE DOI
2202
Distortion, Prediction algorithms, Quality assessment,
Distortion measurement, Optical distortion, Image color analysis,
SROCC
BibRef
Ding, K.Y.[Ke-Yan],
Ma, K.D.[Ke-De],
Wang, S.Q.[Shi-Qi],
Simoncelli, E.P.[Eero P.],
Image Quality Assessment: Unifying Structure and Texture Similarity,
PAMI(44), No. 5, May 2022, pp. 2567-2581.
IEEE DOI
2204
Visualization, Image quality, Distortion measurement,
Nonlinear distortion, Indexes, Databases, Convolution,
perceptual optimization
BibRef
Li, C.Y.[Chun-Yi],
Zhang, Z.C.[Zi-Cheng],
Wu, H.N.[Hao-Ning],
Sun, W.[Wei],
Min, X.K.[Xiong-Kuo],
Liu, X.H.[Xiao-Hong],
Zhai, G.T.[Guang-Tao],
Lin, W.S.[Wei-Si],
AGIQA-3K: An Open Database for AI-Generated Image Quality Assessment,
CirSysVideo(34), No. 8, August 2024, pp. 6833-6846.
IEEE DOI Code:
WWW Link.
2408
Databases, Computational modeling, Measurement,
Artificial intelligence, Quality assessment, Image synthesis,
text-to-image alignment
BibRef
Lee, D.[Donghan],
Park, D.[Daesoon],
Yoo, D.[Daehoon],
Precision and Characteristics of Satellite Spatial Quality
Estimators' Measurement Using an Edge Target Imaged with KOMPSAT-3A,
RS(16), No. 24, 2024, pp. 4660.
DOI Link
2501
BibRef
Athar, S.,
Rehman, A.,
Wang, Z.,
Quality assessment of images undergoing multiple distortion stages,
ICIP17(3175-3179)
IEEE DOI
1803
Databases, Nonlinear distortion, Performance evaluation,
Prediction algorithms, Transform coding, Visualization,
performance evaluation
BibRef
Corchs, S.[Silvia],
Gasparini, F.[Francesca],
A Multidistortion Database for Image Quality,
CCIW17(95-104).
Springer DOI
1704
BibRef
Ciocca, G.[Gianluigi],
Corchs, S.[Silvia],
Gasparini, F.[Francesca],
A Complexity-Based Image Analysis to Investigate Interference Between
Distortions and Image Contents in Image Quality Assessment,
CCIW17(105-121).
Springer DOI
1704
BibRef
Pandžic, M.,
Mihajlovic, D.,
Pandžic, J.,
Pfeifer, N.,
Assessment Of The Geometric Quality Of Sentinel-2 Data,
ISPRS16(B1: 489-494).
DOI Link
1610
BibRef
Kang, L.[Le],
Ye, P.[Peng],
Li, Y.[Yi],
Doermann, D.[David],
Simultaneous estimation of image quality and distortion via
multi-task convolutional neural networks,
ICIP15(2791-2795)
IEEE DOI
1512
CNN
BibRef
Vila, M.[Marius],
Bardera, A.[Anton],
Feixas, M.[Miquel],
Bekaert, P.[Philippe],
Sbert, M.[Mateu],
Analysis of image informativeness measures,
ICIP14(1086-1090)
IEEE DOI
1502
Distortion measurement
BibRef
Wang, Q.[Qing],
Xu, L.[Lin],
Chen, Q.A.[Qi-Ang],
Sun, Q.S.[Quan-Sen],
Import of distortion on saliency applied to image quality assessment,
ICIP14(1165-1169)
IEEE DOI
1502
Accuracy
BibRef
Tsai, C.T.[Chang-Ting],
Hang, H.M.[Hsueh-Ming],
Quality assessment of 3D synthesized views with depth map distortion,
VCIP13(1-6)
IEEE DOI
1402
image reconstruction
BibRef
Cheng, G.Q.[Guang-Quan],
Huang, J.C.[Jin-Cai],
Zhu, C.[Cheng],
Liu, Z.[Zhong],
Cheng, L.Z.[Li-Zhi],
Perceptual image quality assessment using a geometric structural
distortion model,
ICIP10(325-328).
IEEE DOI
1009
BibRef
Wang, C.L.[Cai-Ling],
Liu, X.B.[Xue-Bin],
Hu, B.L.[Bing-Liang],
A new spectral image assessment based on energy of structural
distortion,
IASP09(119-122).
IEEE DOI
0904
BibRef
Scholz, S.,
Gruber, M.,
Radiometric and Geometric Quality Aspects of the Large Format Aerial
Camera ULTRACAM XP,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Jacobsen, K.[Karsten],
Characteristics of Very High Resolution Optical Satellites for
Topographic Mapping,
HighRes11(xx-yy).
PDF File.
1106
BibRef
Earlier:
Effective Resolution of Digital Frame Images,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Passini, R.,
Jacobsen, K.,
Accuracy and Radiometric Study on Very High Resolution Digital Camera
Images,
HighRes09(xx-yy).
PDF File.
0906
BibRef
Liu, M.N.[Ming-Na],
Yang, X.[Xin],
Shang, Y.F.[Yan-Feng],
Image Quality Assessment Based on Multi-scale Geometric Analysis,
CIAP09(807-815).
Springer DOI
0909
BibRef
Wee, C.Y.[Chong-Yaw],
Paramesran, R.[Raveendran],
Mukundan, R.,
Quality Assessment of Gaussian Blurred Images Using Symmetric Geometric
Moments,
CIAP07(807-812).
IEEE DOI
0709
BibRef
Wang, Z.[Zhou],
Simoncelli, E.P.,
An Adaptive Linear System Framework for Image Distortion Analysis,
ICIP05(III: 1160-1163).
IEEE DOI
0512
BibRef
Chapter on Image Processing, Restoration, Enhancement, Filters, Image and Video Coding continues in
Noise Models, Digitization Noise .