23.8.6.9.4 Utility Mapping, Buried Utilities, Pipelines, Subsurface Infrastructure

Chapter Contents (Back)
Buried Objects. Ground Penetrating. Radar.

Osella, A., Martinelli, P., Favetto, A.B., Lopez, E.,
Induction effects of 2-D structures on buried pipelines,
GeoRS(40), No. 1, January 2002, pp. 197-205.
IEEE Top Reference. 0203
BibRef

Borgioli, G., Capineri, L., Falorni, P., Matucci, S., Windsor, C.G.,
The Detection of Buried Pipes From Time-of-Flight Radar Data,
GeoRS(46), No. 8, August 2008, pp. 2254-2266.
IEEE DOI 0808
BibRef

Pettinelli, E., di Matteo, A., Mattei, E., Crocco, L., Soldovieri, F., Redman, J.D., Annan, A.P.,
GPR Response From Buried Pipes: Measurement on Field Site and Tomographic Reconstructions,
GeoRS(47), No. 8, August 2009, pp. 2639-2645.
IEEE DOI 0907
BibRef

Khan, U.S.[Umar S.], Al-Nuaimy, W.[Waleed], El-Samie, F.E.A.[Fathi E. Abd],
Detection of landmines and underground utilities from acoustic and GPR images with a cepstral approach,
JVCIR(21), No. 7, October 2010, pp. 731-740.
Elsevier DOI 1003
Landmine detection; GPR; Acoustic images; MFCCs; Polynomial coefficients; Discrete cosine transform (DCT); Discrete sine transform (DST); Discrete wavelet transform (DWT) BibRef

Boniger, U., Tronicke, J.,
Subsurface Utility Extraction and Characterization: Combining GPR Symmetry and Polarization Attributes,
GeoRS(50), No. 3, March 2012, pp. 736-746.
IEEE DOI 1203
BibRef

Camilo, J.A., Collins, L.M., Malof, J.M.,
A Large Comparison of Feature-Based Approaches for Buried Target Classification in Forward-Looking Ground-Penetrating Radar,
GeoRS(56), No. 1, January 2018, pp. 547-558.
IEEE DOI 1801
Antenna arrays, Array signal processing, Feature extraction, Ground penetrating radar, Pipelines, Radar imaging, radar imaging BibRef

Zhou, X., Chen, H., Li, J.,
An Automatic GPR B-Scan Image Interpreting Model,
GeoRS(56), No. 6, June 2018, pp. 3398-3412.
IEEE DOI 1806
Clustering algorithms, Estimation, Feature extraction, Ground penetrating radar, Noise measurement, Pipelines, Transforms, image processing BibRef

Wang, S.[Shuai], Guo, Q.S.[Qing-Sheng], Xu, X.L.[Xing-Lin], Xie, Y.[Yuwu],
A Study on a Matching Algorithm for Urban Underground Pipelines,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Meng, L.X.[Ling-Xuan], Peng, Z.X.[Zhi-Xing], Zhou, J.[Ji], Zhang, J.[Jirong], Lu, Z.Y.[Zhen-Yu], Baumann, A.[Andreas], Du, Y.[Yan],
Real-Time Detection of Ground Objects Based on Unmanned Aerial Vehicle Remote Sensing with Deep Learning: Application in Excavator Detection for Pipeline Safety,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Šarlah, N.[Nikolaj], Podobnikar, T.[Tomaž], Ambrožic, T.[Tomaž], Mušic, B.[Branko],
Application of Kinematic GPR-TPS Model with High 3D Georeference Accuracy for Underground Utility Infrastructure Mapping: A Case Study from Urban Sites in Celje, Slovenia,
RS(12), No. 8, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Radulovic, A.[Aleksandra], Sladic, D.[Dubravka], Govedarica, M.[Miro], Ristic, A.[Aleksandar], Jovanovic, D.[Dušan],
LADM Based Utility Network Cadastre in Serbia,
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link 1906
BibRef

Yan, J.Y.[Jing-Ya], Jaw, S.W.[Siow Wei], Soon, K.H.[Kean Huat], Wieser, A.[Andreas], Schrotter, G.[Gerhard],
Towards an Underground Utilities 3D Data Model for Land Administration,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Gabrys, M.[Marta], Ortyl, L.[Lukasz],
Georeferencing of Multi-Channel GPR: Accuracy and Efficiency of Mapping of Underground Utility Networks,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Jin, Y.[Yang], Duan, Y.L.[Yun-Ling],
Wavelet Scattering Network-Based Machine Learning for Ground Penetrating Radar Imaging: Application in Pipeline Identification,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Amoroso, N.[Nicola], Cilli, R.[Roberto], Bellantuono, L.[Loredana], Massimi, V.[Vincenzo], Monaco, A.[Alfonso], Nitti, D.O.[Davide Oscar], Nutricato, R.[Raffaele], Samarelli, S.[Sergio], Taggio, N.[Niccolň], Tangaro, S.[Sabina], Tateo, A.[Andrea], Guerriero, L.[Luciano], Bellotti, R.[Roberto],
PSI Clustering for the Assessment of Underground Infrastructure Deterioration,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link 2011
BibRef

Hu, Z.[Zihe], Guo, J.[Jing], Zhang, X.[Xuequan],
Three-Dimensional (3D) Parametric Modeling and Organization for Web-Based Visualization of City-Scale Pipe Network,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Solla, M.[Mercedes], Pérez-Gracia, V.[Vega], Fontul, S.[Simona],
A Review of GPR Application on Transport Infrastructures: Troubleshooting and Best Practices,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Yang, H.[Han], Xu, H.C.[Hong-Cheng], Jiao, S.J.[Shuang-Jian], Yin, F.D.[Feng-De],
Semantic Image Segmentation Based Cable Vibration Frequency Visual Monitoring Using Modified Convolutional Neural Network with Pixel-wise Weighting Strategy,
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Shahri, A.A.[Abbas Abbaszadeh], Kheiri, A.[Ali], Hamzeh, A.[Aliakbar],
Subsurface Topographic Modeling Using Geospatial and Data Driven Algorithm,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link 2106
BibRef


Lieberman, J., Roensdorf, C.,
Modular Approach to 3d Representation of Underground Infrastructure In The Model for Underground Data Definition and Integration (MUDDI),
GeoInfo20(75-81).
DOI Link 2012
BibRef

Métral, C., Daponte, V., Caselli, A., di Marzo, G., Falquet, G.,
Ontology-based Rule Compliance Checking for Subsurface Objects,
GeoInfo20(91-94).
DOI Link 2012
BibRef

Yan, J., Jaw, S.W., Soon, K.H., Schrotter, G.,
The LADM-Based 3D Underground Utility Mapping: Case Study in Singapore,
GeoInfo19(117-122).
DOI Link 1912
BibRef

van Son, R., Jaw, S.W., Wieser, A.,
A Data Capture Framework for Improving The Quality of Subsurface Utility Information,
GeoInfo19(97-104).
DOI Link 1912
BibRef

Tabarro, P.G., Pouliot, J., Fortier, R., Losier, L.M.,
A Webgis to Support GPR 3D Data Acquisition: A First Step for The Integration of Underground Utility Networks in 3D City Models,
GeoInfo17(43-48).
DOI Link 1805
BibRef

Cazzaniga, N.E., Pagliari, D., Pinto, L.,
Photogrammetry For Mapping Underground Utility Lines With Ground Penetrating Radar In Urban Areas,
ISPRS12(XXXIX-B1:297-302).
DOI Link 1209
BibRef

van Son, R., Jaw, S.W., Yan, J., Khoo, V., Loo, R., Teo, S., Schrotter, G.,
A Framework for Reliable Three-dimensional Underground Utility Mapping For Urban Planning,
GeoInfo18(209-214).
DOI Link 1901
BibRef

Pouliot, J., Larrivée, S., Ellul, C., Boudhaim, A.,
Exploring Schema Matching To Compare Geospatial Standards: Application To Underground Utility Networks,
GeoInfo18(157-164).
DOI Link 1901
BibRef

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Through the Wall Imaging, Radar, Microwave Imaging .


Last update:Jun 9, 2021 at 21:04:26