Ghuffar, S.[Sajid],
Székely, B.[Balázs],
Roncat, A.[Andreas],
Pfeifer, N.[Norbert],
Landslide Displacement Monitoring Using 3D Range Flow on Airborne
and Terrestrial LiDAR Data,
RS(5), No. 6, 2013, pp. 2720-2745.
DOI Link
1307
BibRef
Li, X.J.[Xian-Ju],
Cheng, X.W.[Xin-Wen],
Chen, W.T.[Wei-Tao],
Chen, G.[Gang],
Liu, S.W.[Sheng-Wei],
Identification of Forested Landslides Using LiDar Data, Object-based
Image Analysis, and Machine Learning Algorithms,
RS(7), No. 8, 2015, pp. 9705.
DOI Link
1509
BibRef
Pradhan, B.,
Jebur, M.N.,
Shafri, H.Z.M.,
Tehrany, M.S.,
Data Fusion Technique Using Wavelet Transform and Taguchi Methods for
Automatic Landslide Detection From Airborne Laser Scanning Data and
QuickBird Satellite Imagery,
GeoRS(54), No. 3, March 2016, pp. 1610-1622.
IEEE DOI
1603
Image segmentation
BibRef
Mezaal, M.R.[Mustafa Ridha],
Pradhan, B.[Biswajeet],
Rizeei, H.M.[Hossein Mojaddadi],
Improving Landslide Detection from Airborne Laser Scanning Data Using
Optimized Dempster-Shafer,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Hsieh, Y.C.[Yu-Chung],
Chan, Y.C.[Yu-Chang],
Hu, J.C.[Jyr-Ching],
Chen, Y.Z.[Yi-Zhong],
Chen, R.F.[Rou-Fei],
Chen, M.M.[Mien-Ming],
Direct Measurements of Bedrock Incision Rates on the Surface of a
Large Dip-slope Landslide by Multi-Period Airborne Laser Scanning
DEMs,
RS(8), No. 11, 2016, pp. 900.
DOI Link
1612
BibRef
Barbarella, M.[Maurizio],
Fiani, M.[Margherita],
Lugli, A.[Andrea],
Uncertainty in Terrestrial Laser Scanner Surveys of Landslides,
RS(9), No. 2, 2017, pp. xx-yy.
DOI Link
1703
BibRef
Kamps, M.[Martijn],
Bouten, W.[Willem],
Seijmonsbergen, A.C.[Arie C.],
LiDAR and Orthophoto Synergy to optimize Object-Based Landscape Change:
Analysis of an Active Landslide,
RS(9), No. 8, 2017, pp. xx-yy.
DOI Link
1708
BibRef
Chen, X.,
Yu, K.,
Wu, H.,
Determination of Minimum Detectable Deformation of Terrestrial Laser
Scanning Based on Error Entropy Model,
GeoRS(56), No. 1, January 2018, pp. 105-116.
IEEE DOI
1801
Entropy, Laser beams, Monitoring, Strain, Surface emitting lasers,
Uncertainty, Deformation monitoring,
terrestrial laser scanning (TLS)
BibRef
Ossowski, R.[Rafal],
Przyborski, M.[Marek],
Tysiac, P.[Pawel],
Stability Assessment of Coastal Cliffs Incorporating Laser Scanning
Technology and a Numerical Analysis,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Bunn, M.D.[Michael D.],
Leshchinsky, B.A.[Ben A.],
Olsen, M.J.[Michael J.],
Booth, A.[Adam],
A Simplified, Object-Based Framework for Efficient Landslide
Inventorying Using LIDAR Digital Elevation Model Derivatives,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Terefenko, P.[Pawel],
Paprotny, D.[Dominik],
Giza, A.[Andrzej],
Morales-Nápoles, O.[Oswaldo],
Kubicki, A.[Adam],
Walczakiewicz, S.[Szymon],
Monitoring Cliff Erosion with LiDAR Surveys and Bayesian
Network-based Data Analysis,
RS(11), No. 7, 2019, pp. xx-yy.
DOI Link
1904
BibRef
Pawluszek, K.[Kamila],
Marczak, S.[Sylwia],
Borkowski, A.[Andrzej],
Tarolli, P.[Paolo],
Multi-Aspect Analysis of Object-Oriented Landslide Detection Based on
an Extended Set of LiDAR-Derived Terrain Features,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Earlier: A1, A3, A4, Only:
Towards the Optimal Pixel Size of DEM for Automatic Mapping of
Landslide Areas,
Hannover17(83-90).
DOI Link
1805
BibRef
Fanos, A.M.[Ali Mutar],
Pradhan, B.[Biswajeet],
Alamri, A.[Abdullah],
Lee, C.W.[Chang-Wook],
Machine Learning-Based and 3D Kinematic Models for Rockfall Hazard
Assessment Using LiDAR Data and GIS,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
DiFrancesco, P.M.[Paul-Mark],
Bonneau, D.[David],
Hutchinson, D.J.[D. Jean],
The Implications of M3C2 Projection Diameter on 3D Semi-Automated
Rockfall Extraction from Sequential Terrestrial Laser Scanning Point
Clouds,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
de Sanjosé-Blasco, J.J.[José Juan],
López-González, M.[Mariló],
Alonso-Pérez, E.[Estrella],
Serrano, E.[Enrique],
Modelling and Terrestrial Laser Scanning Methodology (2009-2018) on
Debris Cones in Temperate High Mountains,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Kravcov, A.[Alexander],
Cherepetskaya, E.[Elena],
Svoboda, P.[Pavel],
Blokhin, D.[Dmitry],
Ivanov, P.[Pavel],
Shibaev, I.[Ivan],
Thermal Infrared Radiation and Laser Ultrasound for Deformation and
Water Saturation Effects Testing in Limestone,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Conforti, M.[Massimo],
Mercuri, M.[Michele],
Borrelli, L.[Luigi],
Morphological Changes Detection of a Large Earthflow Using Archived
Images, LiDAR-Derived DTM, and UAV-Based Remote Sensing,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
DiFrancesco, P.M.[Paul-Mark],
Bonneau, D.A.[David A.],
Hutchinson, D.J.[D. Jean],
Computational Geometry-Based Surface Reconstruction for Volume
Estimation: A Case Study on Magnitude-Frequency Relations for a
LiDAR-Derived Rockfall Inventory,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Fernández, T.[Tomás],
Pérez-García, J.L.[José L.],
Gómez-López, J.M.[José M.],
Cardenal, J.[Javier],
Moya, F.[Francisco],
Delgado, J.[Jorge],
Multitemporal Landslide Inventory and Activity Analysis by Means of
Aerial Photogrammetry and LiDAR Techniques in an Area of Southern
Spain,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Zhao, L.[Lidu],
Ma, X.P.[Xia-Ping],
Xiang, Z.F.[Zhong-Fu],
Zhang, S.C.[Shuang-Cheng],
Hu, C.[Chuan],
Zhou, Y.[Yin],
Chen, G.C.[Gui-Cheng],
Landslide Deformation Extraction from Terrestrial Laser Scanning Data
with Weighted Least Squares Regularization Iteration Solution,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Fang, C.Y.[Cheng-Yong],
Fan, X.M.[Xuan-Mei],
Zhong, H.[Hao],
Lombardo, L.[Luigi],
Tanyas, H.[Hakan],
Wang, X.[Xin],
A Novel Historical Landslide Detection Approach Based on LiDAR and
Lightweight Attention U-Net,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Sang, M.T.[Meng-Ting],
Wang, W.[Wei],
Pan, Y.[Yani],
RGB-ICP Method to Calculate Ground Three-Dimensional Deformation
Based on Point Cloud from Airborne LiDAR,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Kermarrec, G.[Gaël],
Yang, Z.[Zhonglong],
Czerwonka-Schröder, D.[Daniel],
Classification of Terrestrial Laser Scanner Point Clouds: A
Comparison of Methods for Landslide Monitoring from Mathematical
Surface Approximation,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Duchnowski, R.[Robert],
Wyszkowska, P.[Patrycja],
Msplit Estimation Approach to Modeling Vertical Terrain Displacement
from TLS Data Disturbed by Outliers,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Hosseini, K.[Kourosh],
Reindl, L.[Leonhard],
Raffl, L.[Lukas],
Wiedemann, W.[Wolfgang],
Holst, C.[Christoph],
3D Landslide Monitoring in High Spatial Resolution by Feature
Tracking and Histogram Analyses Using Laser Scanners,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Parente, C.,
Pepe, M.,
Uncertainty In Landslides Volume Estimation Using DEMS Generated By
Airborne Laser Scanner and Photogrammetry Data,
Gi4DM18(397-404).
DOI Link
1805
BibRef
Russhakim, N.A.S.,
Ariff, M.F.M.,
Darwin, N.,
Majid, Z.,
Idris, K.M.,
Abbas, M.A.,
Zainuddin, N.K.,
Yusoff, A.R.,
The Suitability of Terrestrial Laser Scanning for Strata Building,
GeoDisast18(67-76).
DOI Link
1901
See also Study About Terrestrial Laser Scanning for Reconstruction of Precast Concrete to Support Qlassic Assessment, A.
BibRef
Ahmad Fuad, N.,
Yusoff, A.R.,
Mat Zam, P.M.,
Aspuri, A.,
Salleh, M.F.,
Ismail, Z.,
Abbas, M.A.,
Ariff, M.F.M.,
Idris, K.M.,
Majid, Z.,
Evaluating Mobile Laser Scanning For Landslide Monitoring,
Gi4DM18(211-219).
DOI Link
1805
BibRef
Ahmad Fuad, N.,
Yusoff, A.R.,
Ismail, Z.,
Majid, Z.,
Comparing the Performance of Point Cloud Registration Methods For
Landslide Monitoring Using Mobile Laser Scanning Data,
GeoDisast18(11-21).
DOI Link
1901
BibRef
Mat Zam, P.M.,
Ahmad Fuad, N.,
Yusoff, A.R.,
Majid, Z.,
Evaluating the Performance of Terrestrial Laser Scanning for Landslide
Monitoring,
GeoDisast18(35-55).
DOI Link
1901
BibRef
Bibi, T.,
Azahari Razak, K.,
Abdul Rahman, A.,
Latif, A.,
Spatio Temporal Detection and Virtual Mapping of Landslide Using
High-Resolution Airborne Laser Altimetry (LIDAR) in Densely Vegetated
Areas of Tropics,
GeoDisast17(21-30).
DOI Link
1805
BibRef
Kim, G.,
Yune, C.Y.,
Paik, J.,
Lee, S.W.,
Analysis Of Debris Flow Behavior Using Airborne Lidar And Image Data,
ISPRS16(B8: 85-88).
DOI Link
1610
BibRef
Hu, W.[Wenmin],
Wu, L.X.[Li-Xin],
Ground Deformation Extraction Using Visible Images And Lidar Data In
Mining Area,
ISPRS16(B7: 505-512).
DOI Link
1610
BibRef
Herrero-Huertaa, M.[Mónica],
Lindenbergh, R.[Roderik],
Ponsioen, L.[Luc],
van Damme, M.[Myron],
Morphological Changes Along A Dike Landside Slope Sampled By 4d High
Resolution Terrestrial Laser Scanning,
ISPRS16(B3: 227-232).
DOI Link
1610
BibRef
Pilarska, M.,
Ostrowski, W.,
Bakula, K.,
Górski, K.,
Kurczynski, Z.,
The Potential of Light Laser Scanners Developed for Unmanned Aerial
Vehicles: The Review and Accuracyn,
GeoInfo16(87-95).
DOI Link
1612
BibRef
Pawluszek, K.[Kamila],
Borkowski, A.[Andrzej],
Landslides Identification Using Airborne Laser Scanning Data Derived
Topographic Terrain Attributes And Support Vector Machine
Classification,
ISPRS16(B8: 145-149).
DOI Link
1610
BibRef
Barbarella, M.,
Fiani, M.,
Landslide Monitoring Using Terrestrial Laser Scanner: Georeferencing
And Canopy Filtering Issues In A Case Study,
ISPRS12(XXXIX-B5:157-162).
DOI Link
1209
BibRef
Hernández, M.A.,
Pérez-garcía, J.L.,
Fernández, T.,
Cardenal, F.J.,
Mata, E.,
López, A.,
Delgado, J.,
Mozas, A.,
Methodology For Landslide Monitoring In A Road Cut By Means Of
Terrestrial Laser-scanning Techniques,
ISPRS12(XXXIX-B8:21-26).
DOI Link
1209
BibRef
Travelletti, J.,
Delacourt, C.,
Malet, J.P.,
Oppikofer, T.,
Jaboyedoff, M.,
Monitoring Landslide Displacements during a Controlled Rain Experiment
Using a Long-Range Terrestrial Laser Scanning (TLS),
ISPRS08(B5: 485 ff).
PDF File.
0807
BibRef
Sui, L.C.[Li-Chun],
Wang, X.[Xue],
Zhao, D.[Dan],
Qu, J.[Jia],
Application of 3D Laser Scanner for Monitoring of Landslide Hazards,
ISPRS08(B1: 277 ff).
PDF File.
0807
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Landslide Analysis, SAR, InSAR, IFSAR, Radar .