Aguera, F.[Francisco],
Aguilar, F.J.[Fernando J.],
Aguilar, M.A.[Manuel A.],
Using texture analysis to improve per-pixel classification of very high
resolution images for mapping plastic greenhouses,
PandRS(63), No. 6, November 2008, pp. 635-646.
Elsevier DOI
0811
QuickBird; IKONOS; Texture; Land use
BibRef
Carvajal, F.,
Crisanto, E.,
Aguilar, F.J.,
Aguera, F.,
Aguilar, M.A.,
Greenhouses Detection Using an Artificial Neural Network with a Very
High Resolution Satellite Image,
IfromI06(xx-yy).
PDF File.
0607
BibRef
Aguilar, M.A.[Manuel A.],
Aguilar, F.J.[Fernando J.],
Agüera, F.[Francisco],
Assessing Geometric Reliability of Corrected Images from Very High
Resolution Satellites,
PhEngRS(74), No. 12, December 2008, pp. 1551-1560.
WWW Link.
0804
Validation of two theoretical models for estimating the reliability of
geometric accuracies measured as Root Mean Square Error over corrected
single images from QuickBird and Ikonos imagery.
BibRef
Aguilar, M.A.[Manuel A.],
Vallario, A.[Andrea],
Aguilar, F.J.[Fernando J.],
Lorca, A.G.[Andrés García],
Parente, C.[Claudio],
Object-Based Greenhouse Horticultural Crop Identification from
Multi-Temporal Satellite Imagery: A Case Study in Almeria, Spain,
RS(7), No. 6, 2015, pp. 7378.
DOI Link
1507
BibRef
Hasituya,
Chen, Z.X.[Zhong-Xin],
Wang, L.M.[Li-Min],
Liu, J.[Jia],
Selecting Appropriate Spatial Scale for Mapping Plastic-Mulched
Farmland with Satellite Remote Sensing Imagery,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Hasituya,
Chen, Z.X.[Zhong-Xin],
Wang, L.M.[Li-Min],
Wu, W.B.[Wen-Bin],
Jiang, Z.W.[Zhi-Wei],
Li, H.[He],
Monitoring Plastic-Mulched Farmland by Landsat-8 OLI Imagery Using
Spectral and Textural Features,
RS(8), No. 4, 2016, pp. 353.
DOI Link
1604
BibRef
Hasituya,
Chen, Z.X.[Zhong-Xin],
Mapping Plastic-Mulched Farmland with Multi-Temporal Landsat-8 Data,
RS(9), No. 6, 2017, pp. xx-yy.
DOI Link
1706
BibRef
Hasituya,
Chen, Z.X.[Zhong-Xin],
Li, F.[Fei],
Hongmei,
Mapping Plastic-Mulched Farmland with C-Band Full Polarization SAR
Remote Sensing Data,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Hao, P.Y.[Peng-Yu],
Chen, Z.X.[Zhong-Xin],
Tang, H.J.[Hua-Jun],
Li, D.D.[Dan-Dan],
Li, H.[He],
New Workflow of Plastic-Mulched Farmland Mapping using Multi-Temporal
Sentinel-2 data,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Lu, L.Z.[Li-Zhen],
Tao, Y.[Yuan],
Di, L.P.[Li-Ping],
Object-Based Plastic-Mulched Landcover Extraction Using Integrated
Sentinel-1 and Sentinel-2 Data,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Nemmaoui, A.[Abderrahim],
Aguilar, M.A.[Manuel A.],
Aguilar, F.J.[Fernando J.],
Novelli, A.[Antonio],
Lorca, A.G.[Andrés García],
Greenhouse Crop Identification from Multi-Temporal Multi-Sensor
Satellite Imagery Using Object-Based Approach:
A Case Study from Almería (Spain),
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Aguilar, M.,
Pozo, J.L.,
Aguilar, F.J.,
Gracia, A.M.,
Fernandez, I.,
Sanchez-Hermosilla, J.,
Negreiros, J.,
Application Of Close-range Photogrammetry And Digital Photography
Analysis For The Estimation Of Leaf Area Index In A Greenhouse Tomato
Culture,
CloseRange10(xx-yy).
PDF File.
1006
BibRef
Aguilar, M.A.[Manuel A.],
Bianconi, F.[Francesco],
Aguilar, F.J.[Fernando J.],
Fernández, I.[Ismael],
Object-Based Greenhouse Classification from GeoEye-1 and WorldView-2
Stereo Imagery,
RS(6), No. 5, 2014, pp. 3554-3582.
DOI Link
1407
BibRef
Aguilar, M.A.[Manuel A.],
Nemmaoui, A.[Abderrahim],
Novelli, A.[Antonio],
Aguilar, F.J.[Fernando J.],
Lorca, A.G.[Andrés García],
Object-Based Greenhouse Mapping Using Very High Resolution Satellite
Data and Landsat 8 Time Series,
RS(8), No. 6, 2016, pp. 513.
DOI Link
1608
Finding particular kinds of buildings.
BibRef
Aguilar, M.A.,
Vicente, R.,
Aguilar, F.J.,
Fernández, A.,
Saldaña, M.M.,
Optimizing Object-based Classification In Urban Environments Using Very
High Resolution Geoeye-1 Imagery,
AnnalsPRS(I-7), No. 2012, pp. 99-104.
DOI Link
1209
BibRef
Justus, F.[Faith],
Yu, D.[Danlin],
Spatial Distribution of Greenhouse Commercial Horticulture in Kenya
and the Role of Demographic, Infrastructure and Topo-Edaphic Factors,
IJGI(3), No. 1, 2014, pp. 274-296.
DOI Link
1404
BibRef
Aguilar, M.A.,
Aguilar, F.J.,
Lorca, A.G.[A. García],
Guirado, E.,
Betlej, M.,
Cichon, P.,
Nemmaoui, A.,
Vallario, A.,
Parente, C.,
Assessment Of Multiresolution Segmentation For Extracting Greenhouses
From Worldview-2 Imagery,
ISPRS16(B7: 145-152).
DOI Link
1610
BibRef
Yang, D.[Dedi],
Chen, J.[Jin],
Zhou, Y.[Yuan],
Chen, X.[Xiang],
Chen, X.H.[Xue-Hong],
Cao, X.[Xin],
Mapping plastic greenhouse with medium spatial resolution satellite
data: Development of a new spectral index,
PandRS(128), No. 1, 2017, pp. 47-60.
Elsevier DOI
1706
Medium, spatial, resolution, data
BibRef
Shi, T.Y.[Tian-Yang],
Xu, Q.Z.[Qi-Zhi],
Zou, Z.X.[Zheng-Xia],
Shi, Z.W.[Zhen-Wei],
Automatic Raft Labeling for Remote Sensing Images via Dual-Scale
Homogeneous Convolutional Neural Network,
RS(10), No. 7, 2018, pp. xx-yy.
DOI Link
1808
Aquatic farming.
(Not really greenhouses.)
BibRef
Yao, Y.[Yao],
Wang, S.X.[Shi-Xin],
Evaluating the Effects of Image Texture Analysis on Plastic
Greenhouse Segments via Recognition of the OSI-USI-ETA-CEI Pattern,
RS(11), No. 3, 2019, pp. xx-yy.
DOI Link
1902
BibRef
Xiong, Y.K.[Yuan-Kang],
Zhang, Q.L.[Qing-Ling],
Chen, X.[Xi],
Bao, A.[Anming],
Zhang, J.Y.[Jie-Yun],
Wang, Y.J.[Yu-Juan],
Large Scale Agricultural Plastic Mulch Detecting and Monitoring with
Multi-Source Remote Sensing Data: A Case Study in Xinjiang, China,
RS(11), No. 18, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Yang, Q.C.[Qin-Chen],
Liu, M.[Man],
Zhang, Z.T.[Zhi-Tao],
Yang, S.Q.[Shu-Qin],
Ning, J.F.[Ji-Feng],
Han, W.T.[Wen-Ting],
Mapping Plastic Mulched Farmland for High Resolution Images of
Unmanned Aerial Vehicle Using Deep Semantic Segmentation,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Liu, C.A.[Chang-An],
Chen, Z.X.[Zhong-Xin],
Wang, D.[Di],
Li, D.D.[Dan-Dan],
Assessment of the X- and C-Band Polarimetric SAR Data for
Plastic-Mulched Farmland Classification,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
Ou, C.[Cong],
Yang, J.Y.[Jian-Yu],
Du, Z.R.[Zhen-Rong],
Liu, Y.M.[Yi-Ming],
Feng, Q.L.[Quan-Long],
Zhu, D.[Dehai],
Long-Term Mapping of a Greenhouse in a Typical Protected Agricultural
Region Using Landsat Imagery and the Google Earth Engine,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link
2001
BibRef
Wong, L.[Leslie],
Vien, B.S.[Benjamin Steven],
Ma, Y.[Yue],
Kuen, T.[Thomas],
Courtney, F.[Frank],
Kodikara, J.[Jayantha],
Chiu, W.K.[Wing Kong],
Remote Monitoring of Floating Covers Using UAV Photogrammetry,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
covered anaerobic lagoons (CAL) at wastewater treatment plants.
BibRef
Jakovljevic, G.[Gordana],
Govedarica, M.[Miro],
Alvarez-Taboada, F.[Flor],
A Deep Learning Model for Automatic Plastic Mapping Using Unmanned
Aerial Vehicle (UAV) Data,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link
2005
BibRef
Aguilar, M.Á.[Manuel Ángel],
Jiménez-Lao, R.[Rafael],
Nemmaoui, A.[Abderrahim],
Aguilar, F.J.[Fernando José],
Koc-San, D.[Dilek],
Tarantino, E.[Eufemia],
Chourak, M.[Mimoun],
Evaluation of the Consistency of Simultaneously Acquired Sentinel-2
and Landsat 8 Imagery on Plastic Covered Greenhouses,
RS(12), No. 12, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Jiménez-Lao, R.[Rafael],
Aguilar, F.J.[Fernando J.],
Nemmaoui, A.[Abderrahim],
Aguilar, M.A.[Manuel A.],
Remote Sensing of Agricultural Greenhouses and Plastic-Mulched
Farmland: An Analysis of Worldwide Research,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Feng, Z.Y.[Zi-Yi],
Huang, G.H.[Guan-Hua],
Chi, D.C.[Dao-Cai],
Classification of the Complex Agricultural Planting Structure with a
Semi-Supervised Extreme Learning Machine Framework,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Lin, J.H.[Jin-Huang],
Jin, X.O.[Xia-Obin],
Ren, J.[Jie],
Liu, J.P.[Jing-Ping],
Liang, X.Y.[Xin-Yuan],
Zhou, Y.K.[Yin-Kang],
Rapid Mapping of Large-Scale Greenhouse Based on Integrated Learning
Algorithm and Google Earth Engine,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Aguilar, M.A.[Manuel A.],
Jiménez-Lao, R.[Rafael],
Aguilar, F.J.[Fernando J.],
Evaluation of Object-Based Greenhouse Mapping Using WorldView-3 VNIR
and SWIR Data: A Case Study from Almería (Spain),
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Sun, H.R.[Hao-Ran],
Wang, L.[Lei],
Lin, R.[Rencai],
Zhang, Z.[Zhen],
Zhang, B.Z.[Bao-Zhong],
Mapping Plastic Greenhouses with Two-Temporal Sentinel-2 Images and
1D-CNN Deep Learning,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Ma, A.L.[Ai-Long],
Chen, D.Y.[Ding-Yuan],
Zhong, Y.F.[Yan-Fei],
Zheng, Z.[Zhuo],
Zhang, L.P.[Liang-Pei],
National-scale greenhouse mapping for high spatial resolution remote
sensing imagery using a dense object dual-task deep learning
framework: A case study of China,
PandRS(181), 2021, pp. 279-294.
Elsevier DOI
2110
Deep learning, Greenhouse mapping, Object extraction,
Semantic segmentation, Dense objects
BibRef
Zhang, X.P.[Xiao-Ping],
Cheng, B.[Bo],
Chen, J.F.[Jin-Fen],
Liang, C.B.[Chen-Bin],
High-Resolution Boundary Refined Convolutional Neural Network for
Automatic Agricultural Greenhouses Extraction from GaoFen-2 Satellite
Imageries,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ibrahim, E.[Elsy],
Gobin, A.[Anne],
Sentinel-2 Recognition of Uncovered and Plastic Covered Agricultural
Soil,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Ou, C.[Cong],
Yang, J.Y.[Jian-Yu],
Du, Z.R.[Zhen-Rong],
Zhang, T.T.[Ting-Ting],
Niu, B.[Bowen],
Feng, Q.L.[Quan-Long],
Liu, Y.M.[Yi-Ming],
Zhu, D.[Dehai],
Landsat-Derived Annual Maps of Agricultural Greenhouse in Shandong
Province, China from 1989 to 2018,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Liu, A.[Anhua],
Xu, D.[Demin],
Henke, M.[Michael],
Zhang, Y.[Yue],
Li, Y.M.[Yi-Ming],
Liu, X.[Xingan],
Li, T.[Tianlai],
Determination of the Optimal Orientation of Chinese Solar Greenhouses
Using 3D Light Environment Simulations,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Cao, Y.[Yinxia],
Huang, X.[Xin],
A coarse-to-fine weakly supervised learning method for green plastic
cover segmentation using high-resolution remote sensing images,
PandRS(188), 2022, pp. 157-176.
Elsevier DOI
2205
Weakly supervised learning, Green plastic cover segmentation,
Image-level label, High-resolution remote sensing
BibRef
Helman, D.[David],
Yungstein, Y.[Yehuda],
Mulero, G.[Gabriel],
Michael, Y.[Yaron],
High-Throughput Remote Sensing of Vertical Green Living Walls (VGWs)
in Workplaces,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Fu, C.H.[Chen-Hao],
Cheng, L.[Lei],
Qin, S.[Shujing],
Tariq, A.[Aqil],
Liu, P.[Pan],
Zou, K.[Kaijie],
Chang, L.W.[Li-Wei],
Timely Plastic-Mulched Cropland Extraction Method from Complex Mixed
Surfaces in Arid Regions,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Feng, J.N.[Jun-Ning],
Wang, D.L.[Dong-Liang],
Yang, F.[Fan],
Huang, J.[Jing],
Wang, M.H.[Ming-Hao],
Tao, M.F.[Meng-Fan],
Chen, W.[Wei],
PODD: A Dual-Task Detection for Greenhouse Extraction Based on Deep
Learning,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Chen, Z.C.[Zheng-Chao],
Wu, Z.M.[Zhao-Ming],
Gao, J.X.[Ji-Xi],
Cai, M.Y.[Ming-Yong],
Yang, X.[Xuan],
Chen, P.[Pan],
Li, Q.[Qingting],
A Convolutional Neural Network for Large-Scale Greenhouse Extraction
from Satellite Images Considering Spatial Features,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Zhang, T.[Tao],
Tang, B.H.[Bo-Hui],
Huang, L.[Liang],
Chen, G.[Guokun],
Rice and Greenhouse Identification in Plateau Areas Incorporating
Sentinel-1/2 Optical and Radar Remote Sensing Data from Google Earth
Engine,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Yao, Y.[Yao],
Wang, S.X.[Shi-Xin],
Effects of Atmospheric Correction and Image Enhancement on Effective
Plastic Greenhouse Segments Based on a Semi-Automatic Extraction
Method,
IJGI(11), No. 12, 2022, pp. xx-yy.
DOI Link
2301
BibRef
Senel, G.[Gizem],
Aguilar, M.A.[Manuel A.],
Aguilar, F.J.[Fernando J.],
Nemmaoui, A.[Abderrahim],
Goksel, C.[Cigdem],
Unraveling Segmentation Quality of Remotely Sensed Images on
Plastic-Covered Greenhouses: A Rigorous Experimental Analysis from
Supervised Evaluation Metrics,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Chen, D.Y.[Ding-Yuan],
Ma, A.[Ailong],
Zheng, Z.[Zhuo],
Zhong, Y.F.[Yan-Fei],
Large-scale agricultural greenhouse extraction for remote sensing
imagery based on layout attention network: A case study of China,
PandRS(200), 2023, pp. 73-88.
Elsevier DOI
2306
Precision agriculture, Large-scale greenhouse extraction,
Layout attention, Sparse background, Dense foreground, Remote sensing imagery
BibRef
Li, J.[Jie],
Wang, H.[Hui],
Wang, J.L.[Jin-Liang],
Zhang, J.P.[Jian-Peng],
Lan, Y.C.[Yong-Cui],
Deng, Y.C.[Yun-Cheng],
Combining Multi-Source Data and Feature Optimization for
Plastic-Covered Greenhouse Extraction and Mapping Using the Google
Earth Engine: A Case in Central Yunnan Province, China,
RS(15), No. 13, 2023, pp. 3287.
DOI Link
2307
BibRef
Mo, Y.[Yan],
Zhou, W.T.[Wan-Ting],
Chen, W.[Wei],
Extracting Plastic Greenhouses from Remote Sensing Images with a
Novel U-FDS Net,
RS(15), No. 24, 2023, pp. 5736.
DOI Link
2401
BibRef
Takács, P.[Péter],
Tibiássy, A.[Adalbert],
Bernáth, B.[Balázs],
Gotthard, V.[Viktor],
Horváth, G.[Gábor],
Reflection-Polarization Characteristics of Greenhouses Studied by
Drone-Polarimetry Focusing on Polarized Light Pollution of Glass
Surfaces,
RS(16), No. 14, 2024, pp. 2568.
DOI Link
2408
BibRef
Demir, N.,
Eryilmaz, Y.E.,
Oy, S.,
Post-hurricane Damage Assessment On Greenhouse Fields With Use Of Sar
Data,
Gi4DM18(191-195).
DOI Link
1805
BibRef
Coslu, M.,
Sonmez, N.K.,
Koc-San, D.,
Object-based Greenhouse Classification From High Resolution Satellite
Imagery: A Case Study Antalya-turkey,
ISPRS16(B7: 183-187).
DOI Link
1610
BibRef
Koc-San, D.,
Sonmez, N.K.,
Plastic And Glass Greenhouses Detection And Delineation From
Worldview-2 Satellite Imagery,
ISPRS16(B7: 257-262).
DOI Link
1610
BibRef
Kang, J.M.,
Baek, S.H.,
Jung, K.Y.,
Analysis on the Utility of Satellite Imagery for Detection of
Agricultural Facility,
ISPRS12(XXXIX-B3:223-226).
DOI Link
1209
E.g. greenhouses.
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Classification for Crops, Analysis of Production, Specific Crops, Specific Plants .