Kim, T.J.[Tae-Jung],
Shin, D.S.[Dong-Seok],
Lee, Y.R.[Young-Ran],
Development of a Robust Algorithm for Transformation of a 3D Object
Point onto a 2D Image Point for Linear Pushbroom Imagery,
PhEngRS(67), No. 4, April 2001, pp. 449-452.
WWW Link.
0105
BibRef
Chen, T.[Tianen],
Shibasaki, R.Y.[R. Yosuke],
Lin, Z.J.[Zong-Jian],
A Rigorous Laboratory Calibration Method for Interior Orientation of an
Airborne Linear Push-Broom Camera,
PhEngRS(73), No. 4, April 2007, pp. 369-374.
WWW Link.
0704
A rigorous, high accuracy calibration method for three-line imaging systems.
BibRef
Poli, D.[Daniela],
A Rigorous Model for Spaceborne Linear Array Sensors,
PhEngRS(73), No. 2, February 2007, pp. 187-196.
WWW Link.
0704
A rigorous sensor model for the orientation of pushbroom sensors with
along-track stereo viewing and the results obtained in various
applications.
BibRef
Poli, D.[Daniela],
Indirect Georeferencing of Airborne Multi-Line Array Sensors:
A Simulated Case Study,
PCV02(A: 246).
0305
BibRef
Poli, D.,
Remondino, F.,
Angiuli, E.,
Agugiaro, G.,
Evaluation of PLEIADES-1A Triplet on Trento Testfield,
Hannover13(287-292).
DOI Link
1308
BibRef
Agugiaro, G.,
Poli, D.,
Remondino, F.,
Testfield Trento: Geometric Evaluation Of Very High Resolution
Satellite Imagery,
ISPRS12(XXXIX-B1:191-196).
DOI Link
1209
BibRef
Gianinetto, M.[Marco],
Scaioni, M.[Marco],
Automated Geometric Correction of High-resolution Pushbroom Satellite
Data,
PhEngRS(74), No. 1, January 2008, pp. 107-116.
WWW Link.
0803
A new automatic ground control point extraction technique for
increasing the automation for geometric correction of satellite
imagery.
BibRef
Jung, H.S.[Hyung-Sup],
Won, J.S.[Joong-Sun],
Formulation of distortion error for the line-of-sight (LOS) vector
adjustment model and its role in restitution of SPOT imagery,
PandRS(63), No. 6, November 2008, pp. 610-620.
Elsevier DOI
0811
LOS vector adjustment model; Distortion error; Satellite orbit;
Pushbroom imagery; SPOT
BibRef
Leprince, S.,
Muse, P.,
Avouac, J.P.,
In-Flight CCD Distortion Calibration for Pushbroom Satellites Based on
Subpixel Correlation,
GeoRS(46), No. 9, September 2008, pp. 2675-2683.
IEEE DOI
0810
BibRef
Dell'Endice, F.[Francesco],
Nieke, J.[Jens],
Koetz, B.[Benjamin],
Schaepman, M.E.[Michael E.],
Itten, K.[Klaus],
Improving radiometry of imaging spectrometers by using programmable
spectral regions of interest,
PandRS(64), No. 6, November 2009, pp. 632-639.
Elsevier DOI
1001
Calibration; Algorithms; Pushbroom; Radiometric; Imaging spectrometer
BibRef
Jama, M.[Michal],
Lewis, C.[Chris],
Schinstock, D.[Dale],
Identifying degrees of freedom in pushbroom bundle adjustment,
PandRS(66), No. 4, July 2011, pp. 400-407.
Elsevier DOI
1107
Bundle adjustment; Pushbroom camera; Degrees of freedom; DEM; HiRISE
BibRef
Reguera-Salgado, J.,
Calvino-Cancela, M.,
Martin-Herrero, J.,
GPU Geocorrection for Airborne Pushbroom Imagers,
GeoRS(50), No. 11, November 2012, pp. 4409-4419.
IEEE DOI
1210
BibRef
Zhang, A.[Aiwu],
Hu, S.X.[Shao-Xing],
Meng, X.G.[Xian-Gang],
Yang, L.B.[Ling-Bo],
Li, H.L.[Han-Lun],
Toward High Altitude Airship Ground-Based Boresight Calibration of
Hyperspectral Pushbroom Imaging Sensors,
RS(7), No. 12, 2015, pp. 15883.
DOI Link
1601
BibRef
Perrier, R.[Régis],
Arnaud, E.[Elise],
Sturm, P.F.[Peter F.],
Ortner, M.[Mathias],
Estimation of an Observation Satellite's Attitude Using Multimodal
Pushbroom Cameras,
PAMI(37), No. 5, May 2015, pp. 987-1000.
IEEE DOI
1504
BibRef
Earlier:
Sensor Measurements and Image Registration Fusion to Retrieve
Variations of Satellite Attitude,
ACCV10(IV: 361-372).
Springer DOI
1011
BibRef
And:
Satellite image registration for attitude estimation with a constrained
polynomial model,
ICIP10(925-928).
IEEE DOI
1009
BibRef
And:
Estimating satellite attitude from pushbroom sensors,
CVPR10(591-598).
IEEE DOI
1006
BibRef
de Franchis, C.[Carlo],
Meinhardt-Llopis, E.[Enric],
Greslou, D.[Daniel],
Facciolo, G.[Gabriele],
Attitude Refinement for Orbiting Pushbroom Cameras:
A Simple Polynomial Fitting Method,
IPOL(5), 2015, pp. 328-361.
DOI Link
1601
BibRef
Bettemir, Ö.H.,
Prediction of Georeferencing Precision of Pushbroom Scanner Images,
GeoRS(50), No. 3, March 2012, pp. 831-838.
IEEE DOI
1203
BibRef
Zhang, Y.,
Wan, Y.,
Huang, X.,
Ling, X.,
DEM-Assisted RFM Block Adjustment of Pushbroom Nadir Viewing HRS
Imagery,
GeoRS(54), No. 2, February 2016, pp. 1025-1034.
IEEE DOI
1601
Accuracy
BibRef
Oh, K.Y.[Kwan-Young],
Jung, H.S.[Hyung-Sup],
Automated Bias-Compensation Approach for Pushbroom Sensor Modeling
Using Digital Elevation Model,
GeoRS(54), No. 6, June 2016, pp. 3400-3409.
IEEE DOI
1606
Bias compensation of rational polynomial coefficients.
digital elevation models
BibRef
Wan, Y.[Yi],
Zhang, Y.J.[Yong-Jun],
The P2L method of mismatch detection for push broom high-resolution
satellite images,
PandRS(130), No. 1, 2017, pp. 317-328.
Elsevier DOI
1708
Remote, sensing
BibRef
Wan, Y.[Yi],
Zhang, Y.J.[Yong-Jun],
Liu, X.[Xinyi],
An a-contrario method of mismatch detection for two-view pushbroom
satellite images,
PandRS(153), 2019, pp. 123-136.
Elsevier DOI
1906
Image matching, Mismatch detection, Remote sensing,
Satellite image, method
BibRef
Hu, B.L.[Bin-Lin],
Hao, S.J.[Shi-Jing],
Sun, D.X.[De-Xin],
Liu, Y.N.[Yin-Nian],
A novel scene-based non-uniformity correction method for SWIR
push-broom hyperspectral sensors,
PandRS(131), No. 1, 2017, pp. 160-169.
Elsevier DOI
1709
Hyperspectral
BibRef
Jannati, M.[Mojtaba],
Zoej, M.J.V.[Mohammad Javad Valadan],
Mokhtarzade, M.[Mehdi],
A novel approach for epipolar resampling of cross-track linear
pushbroom imagery using orbital parameters model,
PandRS(137), 2018, pp. 1-14.
Elsevier DOI
1802
Epipolar resampling, Linear pushbroom imagery,
Cross-track imaging, Orbital parameters model
BibRef
Zhang, G.[Guo],
Xu, K.[Kai],
Zhang, Q.J.[Qing-Jun],
Li, D.R.[De-Ren],
Correction of Pushbroom Satellite Imagery Interior Distortions
Independent of Ground Control Points,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Barbieux, K.[Kévin],
Pushbroom Hyperspectral Data Orientation by Combining Feature-Based
and Area-Based Co-Registration Techniques,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link
1805
BibRef
Jiang, Y.H.[Yong-Hua],
Cui, Z.[Zihao],
Zhang, G.[Guo],
Wang, J.Y.[Jing-Yin],
Xu, M.Z.[Miao-Zhong],
Zhao, Y.B.[Yan-Bin],
Xu, Y.[Yi],
CCD distortion calibration without accurate ground control data for
pushbroom satellites,
PandRS(142), 2018, pp. 21-26.
Elsevier DOI
1807
Linear CCD array, Pushbroom satellite, Geometric positioning,
Interior calibration, Rational polynomial coefficient
BibRef
Ait-Aider, O.[Omar],
Berry, F.[François],
A flexible calibration method for the intrinsic and mechanical
parameters of panoramic line-scan cameras,
CVIU(180), 2019, pp. 47-58.
Elsevier DOI
1903
Camera modeling, Panoramic cameras, Calibration
BibRef
Wohlfeil, J.[Jürgen],
Bucher, T.[Tilman],
Börner, A.[Anko],
Fischer, C.[Christian],
Frauenberger, O.[Olaf],
Piltz, B.[Björn],
In-orbit Geometric Calibration of Firebird's Infrared Line Cameras,
PSIVT19(45-58).
Springer DOI
2003
BibRef
Funatomi, T.[Takuya],
Ogawa, T.[Takehiro],
Tanaka, K.[Kenichiro],
Kubo, H.[Hiroyuki],
Caron, G.[Guillaume],
Mouaddib, E.[El_Mustapha],
Matsushita, Y.[Yasuyuki],
Mukaigawa, Y.[Yasuhiro],
Eliminating Temporal Illumination Variations in Whisk-broom
Hyperspectral Imaging,
IJCV(130), No. 5, May 2022, pp. 1310-1324.
2205
BibRef
Xu, X.P.[Xiang-Peng],
Zhuge, S.[Sheng],
Guan, B.L.[Bang-Lei],
Lin, B.[Bin],
Gan, S.W.[Shu-Wei],
Yang, X.[Xia],
Zhang, X.H.[Xiao-Hu],
On-Orbit Calibration for Spaceborne Line Array Camera and LiDAR,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Begeman, C.[Christopher],
Helder, D.[Dennis],
Leigh, L.[Larry],
Pinkert, C.[Chase],
Relative Radiometric Correction of Pushbroom Satellites Using the Yaw
Maneuver,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Song, L.[Liyao],
Li, H.W.[Hai-Wei],
Chen, T.Q.[Tie-Qiao],
Chen, J.Y.[Jun-Yu],
Liu, S.[Song],
Fan, J.C.[Jian-Cun],
Wang, Q.[Quan],
An Integrated Solution of UAV Push-Broom Hyperspectral System Based
on Geometric Correction with MSI and Radiation Correction Considering
Outdoor Illumination Variation,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, Z.[Zhuo],
Li, H.W.[Hai-Wei],
Wang, S.[Shuang],
Song, L.[Liyao],
Chen, J.Y.[Jun-Yu],
Methodology and Modeling of UAV Push-Broom Hyperspectral BRDF
Observation Considering Illumination Correction,
RS(16), No. 3, 2024, pp. 543.
DOI Link
2402
BibRef
Li, L.T.[Li-Tao],
Li, Z.[Zhen],
Wang, Z.X.[Zhi-Xin],
Jiang, Y.H.[Yong-Hua],
Shen, X.[Xin],
Wu, J.Q.[Jia-Qi],
On-Orbit Relative Radiometric Calibration of the Bayer Pattern
Push-Broom Sensor for Zhuhai-1 Video Satellites,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Nezhad, S.S.A.[Seyede Shahrzad Ahooei],
Zoej, M.J.V.[Mohammad Javad Valadan],
Khoshelham, K.[Kourosh],
Ghorbanian, A.[Arsalan],
Farnaghi, M.[Mahdi],
Jamali, S.[Sadegh],
Youssefi, F.[Fahimeh],
Gheisari, M.[Mehdi],
Best Scanline Determination of Pushbroom Images for a Direct Object
to Image Space Transformation Using Multilayer Perceptron,
RS(16), No. 15, 2024, pp. 2787.
DOI Link
2408
BibRef
Geng, X.,
Xing, S.,
Xu, Q.,
A Generic Rigorous Sensor Model for Photogrammetric Processing Of
Pushbroom Planetary Images,
PRSM19(1389-1396).
DOI Link
1912
BibRef
Donné, S.,
Luong, H.,
Dhondt, S.,
Wuyts, N.,
Inzé, D.,
Goossens, B.,
Philips, W.,
Robust plane-based calibration for linear cameras,
ICIP17(36-40)
IEEE DOI
1803
Calibration, Cameras, Satellites, Sensor arrays,
Transmission line matrix methods,
linear camera
BibRef
Barbieux, K.,
Constantin, D.,
Merminod, B.,
Correction Of Airborne Pushbroom Images Orientation Using Bundle
Adjustment Of Frame Images,
ISPRS16(B3: 813-818).
DOI Link
1610
BibRef
Sheikh, Y.[Yaser],
Gritai, A.[Alexei],
Shah, M.[Mubarak],
On the Spacetime Geometry of Galilean Cameras,
CVPR07(1-8).
IEEE DOI
0706
Camera moving at constant velocity.
Perspective and pushbroom.
BibRef
Yu, J.Y.[Jing-Yi],
McMillan, L.[Leonard],
General Linear Cameras,
ECCV04(Vol II: 14-27).
Springer DOI
0405
unifies many previous camera models into a single representation.
capable of describing all perspective (pinhole), orthographic, and
many multiperspective (including pushbroom and two-slit) cameras, as
well as epipolar plane images.
BibRef
Chapter on Active Vision, Camera Calibration, Mobile Robots, Navigation, Road Following continues in
Refractive, Water, Underwater Camera Calibration .