Clarkson, K.,
A Randomized Algorithm for Closest-Point Queries,
SIAM_JC(17), 1988, pp. 830-847.
BibRef
8800
Tüceryan, M.[Mihran],
Chorzempa, T.[Terrence],
Relative sensitivity of a family of closest-point graphs in computer
vision applications,
PR(24), No. 5, 1991, pp. 361-373.
Elsevier DOI
0401
Study the properties of a set of four related
closest-point graphs using Monte Carlo methods: (i) the Delaunay
triangulation (DT) and its dual, Voronoi tessellation, (ii) the
Gabriel graph (GG), (iii) the relative neighborhood graph (RNG), and
(iv) the minimum spanning tree (MST). Delaunay triangulation is shown
to be the least sensitive to such noisy conditions.
BibRef
Mitra, P.,
Chaudhuri, B.B.,
Efficiently Computing the Closest Point to a Query Line,
PRL(19), No. 11, September 1998, pp. 1027-1035.
9811
BibRef
Kapoutsis, C.A.,
Vavoulidis, C.P.,
Pitas, I.,
Morphological Iterative Closest Point Algorithm,
IP(8), No. 11, November 1999, pp. 1644-1646.
IEEE DOI
9911
BibRef
Earlier: A2, A3 Only:
CAIP97(416-423).
Springer DOI
9709
BibRef
Earlier:
Morphological techniques in the iterative closest point algorithm,
ICIP98(I: 808-812).
IEEE DOI
9810
BibRef
Sharp, G.C.[Gregory C.],
Lee, S.W.[Sang W.],
Wehe, D.K.[David K.],
ICP Registration Using Invariant Features,
PAMI(24), No. 1, January 2002, pp. 90-102.
IEEE DOI
0201
Surface Matching. ICP: Iterative Closest Point. Range image registration.
See also Multiview Registration of 3D Scenes by Minimizing Error between Coordinate Frames.
BibRef
Feldmar, J.,
Declerck, J.,
Malandain, G.,
Ayache, N.J.,
Extension of the ICP Algorithm to Nonrigid Intensity-Based
Registration of 3D Volumes,
CVIU(66), No. 2, May 1997, pp. 193-206.
DOI Link
9705
Surface Matching.
BibRef
Earlier: A1, A3, A2, A4:
MMBIA96(REGISTRATION II).
(Conference paper with non-rigid)
BibRef
Lee, B.U.[Byung-Uk],
Kim, C.M.[Chul-Min],
Park, R.H.[Rae-Hong],
An Orientation Reliability Matrix for the Iterative Closest Point
Algorithm,
PAMI(22), No. 10, October 2000, pp. 1205-1208.
IEEE DOI
0011
Evaluation. Reliability of matching depends on surface normals of the object.
See also Method for Registration of 3-D Shapes, A. and
See also Object Modeling by Registration of Multiple Range Images.
BibRef
Gupta, S.[Sumit],
Sengupta, K.[Kuntal],
Kassim, A.A.[Ashraf A.],
Compression of Dynamic 3D Geometry Data Using Iterative Closest Point
Algorithm,
CVIU(87), No. 1-3, July 2002, pp. 116-130.
DOI Link
0301
motion compression for 3D geometric data. Match 3D vertices.
BibRef
Mukhopadhyay, A.[Asish],
Using simplicial partitions to determine a closest point to a query
line,
PRL(24), No. 12, August 2003, pp. 1915-1920.
Elsevier DOI
0304
BibRef
Liu, Y.H.[Yong-Huai],
Improving ICP with easy implementation for free-form surface matching,
PR(37), No. 2, February 2004, pp. 211-226.
Elsevier DOI
0311
BibRef
Kaneko, S.[Shun'ichi],
Kondo, T.[Tomonori],
Miyamoto, A.[Atsushi],
Robust matching of 3D contours using iterative closest point algorithm
improved by M-estimation,
PR(36), No. 9, September 2003, pp. 2041-2047.
Elsevier DOI
Matching, Regions.
0307
BibRef
Chetverikov, D.[Dmitry],
Stepanov, D.[Dmitry],
Krsek, P.[Pavel],
Robust Euclidean Alignment of 3D Point Sets:
The Trimmed Iterative Closest Point Algorithm,
IVC(23), No. 3, 1 March 2005, pp. 299-309.
Elsevier DOI
0501
BibRef
Chetverikov, D.[Dmitry],
Svirko, D.,
Stepanov, D.[Dmitry],
Krsek, P.[Pavel],
The trimmed iterative closest point algorithm,
ICPR02(III: 545-548).
IEEE DOI
0211
BibRef
Du, S.Y.[Shao-Yi],
Zheng, N.N.[Nan-Ning],
Meng, G.,
Yuan, Z.,
Affine Registration of Point Sets Using ICP and ICA,
SPLetters(15), No. 1, 2008, pp. 689-692.
IEEE DOI
0811
BibRef
Dong, J.M.[Jian-Min],
Cai, Z.M.[Zhong-Min],
Du, S.Y.[Shao-Yi],
Improvement of affine iterative closest point algorithm for partial
registration,
IET-CV(11), No. 2, March 2017, pp. 135-144.
DOI Link
1703
BibRef
Du, S.Y.[Shao-Yi],
Zheng, N.N.[Nan-Ning],
Ying, S.H.[Shi-Hui],
Liu, J.Y.[Jian-Yi],
Affine iterative closest point algorithm for point set registration,
PRL(31), No. 9, 1 July 2010, pp. 791-799.
Elsevier DOI
1004
Affine point set registration; Iterative closest point algorithm; Lie
group; Singular value decomposition; Independent component analysis
BibRef
Zhu, J.[Jihua],
Du, S.Y.[Shao-Yi],
Yuan, Z.,
Liu, Y.,
Ma, L.,
Robust affine iterative closest point algorithm with bidirectional
distance,
IET-CV(6), No. 3, 2012, pp. 252-261.
DOI Link
1205
BibRef
Li, C.[Ce],
Xue, J.R.[Jian-Ru],
Zheng, N.N.[Nan-Ning],
Du, S.Y.[Shao-Yi],
Zhu, J.[Jihua],
Tian, Z.Q.[Zhi-Qiang],
Fast and robust isotropic scaling iterative closest point algorithm,
ICIP11(1485-1488).
IEEE DOI
1201
BibRef
Du, S.Y.[Shao-Yi],
Zheng, N.N.[Nan-Ning],
Ying, S.H.[Shi-Hui],
You, Q.[Qubo],
Wu, Y.[Yang],
AN Extension of the ICP Algorithm Considering Scale Factor,
ICIP07(V: 193-196).
IEEE DOI
0709
BibRef
Maier-Hein, L.[Lena],
Franz, A.M.[Alfred Michael],
dos Santos, T.R.[Thiago R.],
Schmidt, M.[Mirko],
Fangerau, M.[Markus],
Meinzer, H.P.[Hans-Peter],
Fitzpatrick, J.M.[J. Michael],
Convergent Iterative Closest-Point Algorithm to Accomodate Anisotropic
and Inhomogenous Localization Error,
PAMI(34), No. 8, August 2012, pp. 1520-1532.
IEEE DOI
1206
Iteratively update the transform given current matches.
Extend for partially overlapping surfaces, optimize.
BibRef
Feng, Z.[Zexi],
An efficient initial guess for the ICP method,
PRL(125), 2019, pp. 721-726.
Elsevier DOI
1909
ICP, Statistics, Covariance
BibRef
Synave, R.,
Desbarats, P.,
Gueorguieva, S.,
Automated Trimmed Iterative Closest Point Algorithm,
ISVC07(II: 489-498).
Springer DOI
0711
BibRef
Wang, K.D.[Ke-Dong],
Yan, L.[Lei],
Deng, W.[Wei],
Zhang, J.H.[Jun-Hong],
Research on Iterative Closest Contour Point for Underwater
Terrain-Aided Navigation,
SSPR06(252-260).
Springer DOI
0608
BibRef
Amor, B.B.[Boulbaba Ben],
Ardabilian, M.[Mohsen],
Chen, L.M.[Li-Ming],
New Experiments on ICP-Based 3D Face Recognition and Authentication,
ICPR06(III: 1195-1199).
IEEE DOI
0609
BibRef
Low, K.L.[Kok-Lim],
Lastra, A.,
Reliable and rapidly-converging ICP algorithm using multiresolution
smoothing,
3DIM03(171-178).
IEEE DOI
0311
BibRef
Blais, F.,
Picard, M.,
Godin, G.,
Recursive model optimization using ICP and free moving 3D data
acquisition,
3DIM03(251-258).
IEEE DOI
0311
BibRef
Langis, C.,
Greenspan, M.,
Godin, G.,
The parallel iterative closest point algorithm,
3DIM01(195-202).
IEEE DOI
0106
BibRef
Greenspan, M.,
Godin, G.,
A nearest neighbor method for efficient ICP,
3DIM01(161-168).
IEEE DOI
0106
BibRef
Gelfand, N.,
Ikemoto, L.,
Rusinkiewicz, S.,
Levoy, M.,
Geometrically stable sampling for the ICP algorithm,
3DIM03(260-267).
IEEE DOI
0311
BibRef
Rusinkiewicz, S.,
Levoy, M.,
Efficient variants of the ICP algorithm,
3DIM01(145-152).
IEEE DOI
0106
BibRef
Jost, T.,
Hugli, H.,
A multi-resolution ICP with heuristic closest point search for fast and
robust 3D registration of range images,
3DIM03(427-433).
IEEE DOI
0311
Surface Matching.
BibRef
Zinssee, P.,
Schmidt, J.,
Niemann, H.,
A refined ICP algorithm for robust 3-d correspondence estimation,
ICIP03(II: 695-698).
IEEE DOI
0312
BibRef
Granger, S.[Sebastien],
Pennec, X.[Xavier],
Roche, A.[Alexis],
Rigid Point-Surface Registration using Oriented Points and an EM
Variant of ICP for Computer Guided Oral Implantology,
INRIARR-4169, April 2001.
HTML Version.
0211
BibRef
Murino, V.,
Ronchetti, L.,
Castellani, U.,
Fusiello, A.,
Reconstruction of complex environments by robust pre-aligned ICP,
3DIM01(187-194).
IEEE DOI
0106
BibRef
Krebs, B.,
Sieverding, P.,
Korn, B.,
A Fuzzy ICP Algorithm for 3D Free Form Object Recognition,
ICPR96(I: 539-543).
IEEE DOI
9608
(Technical Univ. Braunschweig, D)
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Fast, Parallel, Multiresolution Techniques for the Computation of Skeletons .