13.3.2.2 Graph Learning, Hypergraph Learning

Chapter Contents (Back)
Graph Learning. Scene Graph. Hypergraph Learning.
See also Bipartite Graphs for Multi-View Learning.
See also Graph Neural Networks, GNN.
See also Graph Convolutional Neural Networks.

Yu, J., Tao, D., Wang, M.,
Adaptive Hypergraph Learning and its Application in Image Classification,
IP(21), No. 7, July 2012, pp. 3262-3272.
IEEE DOI 1206
BibRef

Zhang, Z., Lin, H., Zhao, X., Ji, R., Gao, Y.,
Inductive Multi-Hypergraph Learning and Its Application on View-Based 3D Object Classification,
IP(27), No. 12, December 2018, pp. 5957-5968.
IEEE DOI 1810
graph theory, image classification, learning (artificial intelligence), multi-hypergraph learning. BibRef

Bonev, B.[Boyan], Lozano, M.A.[Miguel A.], Escolano, F.[Francisco], Suau, P.[Pablo], Aguilar, W.[Wendy], Saez, J.M., Cazorla, M.A.[Miguel A.],
Region and constellations based categorization of images with unsupervised graph learning,
IVC(27), No. 7, 4 June 2009, pp. 960-978.
Elsevier DOI 0904
Image categorization; Clustering of graphs; EM algorithms BibRef
Earlier: A3, A2, A1, A4, A7, A5, Only:
Constellations and the Unsupervised Learning of Graphs,
GbRPR07(340-350).
Springer DOI 0706
BibRef

Romero, A.[Anna], Cazorla, M.A.[Miguel A.],
Topological SLAM Using Omnidirectional Images: Merging Feature Detectors and Graph-Matching,
ACIVS10(I: 464-475).
Springer DOI 1012
BibRef

Kang, Z., Pan, H., Hoi, S.C.H., Xu, Z.,
Robust Graph Learning From Noisy Data,
Cyber(50), No. 5, May 2020, pp. 1833-1843.
IEEE DOI 2005
Noise measurement, Adaptation models, Laplace equations, Manifolds, Task analysis, Reliability, Data models, Clustering, similarity measure BibRef

Li, J.N.[Jun-Nan], Xiong, C.M.[Cai-Ming], Hoi, S.C.H.[Steven C.H.],
Learning from Noisy Data with Robust Representation Learning,
ICCV21(9465-9474)
IEEE DOI 2203
Representation learning, Codes, Computational modeling, Benchmark testing, Cleaning, Robustness, Representation learning BibRef

Li, J.N.[Jun-Nan], Wong, Y.K.[Yong-Kang], Zhao, Q.[Qi], Kankanhalli, M.S.[Mohan S.],
Learning to Learn From Noisy Labeled Data,
CVPR19(5046-5054).
IEEE DOI 2002
BibRef

Saboksayr, S.S.[Seyed Saman], Mateos, G.[Gonzalo],
Accelerated Graph Learning From Smooth Signals,
SPLetters(28), 2021, pp. 2192-2196.
IEEE DOI 2112
Signal processing algorithms, Convergence, Topology, Network topology, Inference algorithms, Convex functions, Tuning, topology identification BibRef

Shi, D.[Dan], Zhu, L.[Lei], Cheng, Z.Y.[Zhi-Yong], Li, Z.H.[Zhi-Hui], Zhang, H.X.[Hua-Xiang],
Unsupervised multi-view feature extraction with dynamic graph learning,
JVCIR(56), 2018, pp. 256-264.
Elsevier DOI 1811
Multi-view feature extraction, Intrinsic sample relations, Dynamic graph learning BibRef

Liang, C.[Cheng], Wang, L.Z.[Lian-Zhi], Liu, L.[Li], Zhang, H.X.[Hua-Xiang], Guo, F.[Fei],
Multi-view unsupervised feature selection with tensor robust principal component analysis and consensus graph learning,
PR(141), 2023, pp. 109632.
Elsevier DOI 2306
Multi-view unsupervised feature selection, Low-rank tensor learning, Spectral embedding, Robust sparse regression model BibRef

Zhang, X.[Xiang], Wang, Q.[Qiao],
Adaptive Online Graph Learning,
SPLetters(32), 2025, pp. 2094-2098.
IEEE DOI 2505
Heuristic algorithms, Signal processing algorithms, Adaptation models, Vectors, Measurement, Complexity theory, Training, regret analysis BibRef

Wang, H.[Hao], Zhang, S.[Shuo], Leng, B.[Biao],
HGFormer: Topology-Aware Vision Transformer With HyperGraph Learning,
MultMed(27), 2025, pp. 5746-5757.
IEEE DOI 2509
Topology, Transformers, Visualization, Semantics, Nearest neighbor methods, Network topology, Data mining, hypergraph learning BibRef

Yang, X.J.[Xiao-Jun], Yu, W.Z.[Wei-Zhong], Wang, R.[Rong], Zhang, G.H.[Guo-Hao], Nie, F.P.[Fei-Ping],
Fast spectral clustering learning with hierarchical bipartite graph for large-scale data,
PRL(130), 2020, pp. 345-352.
Elsevier DOI 2002
Spectral clustering, Hierarchical graph, Bipartite graph, Large scale data, Out-of-sample BibRef

Yang, X.J.[Xiao-Jun], Zheng, Z.H.[Zhen-Hao], Xie, J.M.[Jie-Ming], Zhao, W.H.[Wei-Hao], Xue, J.J.[Jing-Jing], Nie, F.P.[Fei-Ping],
Spectral ensemble clustering from graph reconstruction with auto-weighted cluster,
PRL(196), 2025, pp. 243-249.
Elsevier DOI 2509
Spectral clustering, Adaptive weighting, Graph learning BibRef

Gao, C.H.[Chen-Hui], Chen, W.Z.[Wen-Zhi], Nie, F.P.[Fei-Ping], Yu, W.Z.[Wei-Zhong], Wang, Z.H.[Zong-Hui],
Spectral clustering with linear embedding: A discrete clustering method for large-scale data,
PR(151), 2024, pp. 110396.
Elsevier DOI 2404
Spectral clustering, Graph embedding, Unsupervised learning BibRef

Zhang, Z.T.[Zi-Tong], Chen, X.J.[Xiao-Jun], Wang, C.[Chen], Wang, R.[Ruili], Song, W.[Wei], Nie, F.P.[Fei-Ping],
A Structured Bipartite Graph Learning method for ensemble clustering,
PR(160), 2025, pp. 111133.
Elsevier DOI 2501
Clustering, Ensemble clustering, Structure learning BibRef

Zhao, Z.[Zihua], Cao, Z.[Zhe], Xin, H.[Haonan], Wang, R.[Rong], Wu, D.Y.[Dan-Yang], Wang, Z.[Zheng], Nie, F.P.[Fei-Ping],
Enhancing Clustering Performance With Tensorized High-Order Bipartite Graphs: A Structured Graph Learning Approach,
CirSysVideo(35), No. 3, March 2025, pp. 2616-2631.
IEEE DOI Code:
WWW Link. 2503
Tensors, Bipartite graph, Noise, Clustering algorithms, Turning, Sparse matrices, Minimization, Matrix decomposition, tensor nuclear norm BibRef

Zhang, H.[Han], Nie, F.P.[Fei-Ping], Li, X.L.[Xue-Long],
Large-Scale Clustering With Structured Optimal Bipartite Graph,
PAMI(45), No. 8, August 2023, pp. 9950-9963.
IEEE DOI 2307
Bipartite graph, Scalability, Task analysis, Clustering algorithms, Optimization, Laplace equations, Partitioning algorithms, pairwise relation BibRef

Wang, Z.[Zhen], Li, Z.Q.[Zhao-Qing], Wang, R.[Rong], Nie, F.P.[Fei-Ping], Li, X.L.[Xue-Long],
Large Graph Clustering With Simultaneous Spectral Embedding and Discretization,
PAMI(43), No. 12, December 2021, pp. 4426-4440.
IEEE DOI 2112
Clustering methods, Clustering algorithms, Optimization, Complexity theory, Acceleration, Optical imaging, label propagation BibRef

Wen, J.[Jie], Xu, Y.[Yong], Liu, H.[Hong],
Incomplete Multiview Spectral Clustering with Adaptive Graph Learning,
Cyber(50), No. 4, April 2020, pp. 1418-1429.
IEEE DOI 2003
Clustering methods, Laplace equations, Cybernetics, Diseases, Optimization, Clustering algorithms, Matrix decomposition, low-rank representation BibRef

Zhang, J.Y.[Ji-Ying], Li, F.Y.[Fu-Yang], Xiao, X.[Xi], Chen, G.Z.[Guan-Zi`], Xu, T.Y.[Ting-Yang], Rong, Y.[Yu], Huang, J.Z.[Jun-Zhou], Bian, Y.[Yatao],
A Unified Random Walk, Its Induced Laplacians and Spectral Convolutions for Deep Hypergraph Learning,
PAMI(47), No. 11, November 2025, pp. 10129-10141.
IEEE DOI 2510
Laplace equations, Proteins, Visualization, Optical wavelength conversion, Data mining, Directed graphs, equivalence BibRef


Zhu, J.[Jing], Zhou, Y.H.[Yu-Hang], Qian, S.Y.[Sheng-Yi], He, Z.[Zhongmou], Zhao, T.[Tong], Shah, N.[Neil], Koutra, D.[Danai],
Mosaic of Modalities: A Comprehensive Benchmark for Multimodal Graph Learning,
CVPR25(14215-14224)
IEEE DOI 2508
Visualization, Technological innovation, Machine learning, Benchmark testing, Drives, Distance measurement, Videos BibRef

Ma, Y.[Yanni], Liu, H.[Hao], Pei, Y.[Yun], Guo, Y.L.[Yu-Lan],
Heterogeneous Graph Learning for Scene Graph Prediction in 3d Point Clouds,
ECCV24(XXVI: 274-291).
Springer DOI 2412
BibRef

Koch, S.[Sebastian], Hermosilla, P.[Pedro], Vaskevicius, N.[Narunas], Colosi, M.[Mirco], Ropinski, T.[Timo],
SGRec3D: Self-Supervised 3D Scene Graph Learning via Object-Level Scene Reconstruction,
WACV24(3392-3402)
IEEE DOI 2404
Solid modeling, Annotations, Semantics, Predictive models, Data models, Algorithms, 3D computer vision, Algorithms BibRef

Chen, J.[Jie], Li, Z.L.[Zi-Long], Zhu, Y.[Yin], Zhang, J.P.[Jun-Ping], Pu, J.[Jian],
From Node Interaction to Hop Interaction: New Effective and Scalable Graph Learning Paradigm,
CVPR23(7876-7885)
IEEE DOI 2309
BibRef

Harish, A.N.[Abhinav Narayan], Nagar, R.[Rajendra], Raman, S.[Shanmuganathan],
RGL-NET: A Recurrent Graph Learning framework for Progressive Part Assembly,
WACV22(647-656)
IEEE DOI 2202
Actuators, Shape, Planning, Task analysis, Collision avoidance, Vision for Robotics BibRef

Karantaidis, G.[George], Sarridis, I.[Ioannis], Kotropoulos, C.[Constantine],
Block Randomized Optimization for Adaptive Hypergraph Learning,
ICIP19(864-868)
IEEE DOI 1910
Adaptive hypergraph learning, Randomized algorithms, Block randomized singular value decomposition, Conjugate gradient method BibRef

Chen, W.F.[Wei-Fu], Feng, G.C.[Guo-Can],
Semi-supervised Graph Learning: Near Strangers or Distant Relatives,
ICPR10(3368-3371).
IEEE DOI 1008
BibRef

Diamond, M.D., Narasimhamurthi, N., and Ganapathy, S.,
A Systematic Approach to Continuous Graph Labeling with Application to Computer Vision,
AAAI-82(50-54). BibRef 8200

Tanimoto, S.L., and Pavlidis, T.,
Graph Labelling Algorithms for Picture Analysis,
ICPR76(749-752). BibRef 7600

Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Network Embedding, Graph Embedding .


Last update:Dec 17, 2025 at 15:38:33