Taratorin, A.M.,
Sideman, S.,
Constrained Regularized Image Restoration Using Projection on a
Set of Regularized Solutions,
TSP(44), No. 6, June 1996, pp. 1547-1548.
9607
BibRef
Geman, D.,
Yang, C.D.[Cheng-Da],
Nonlinear image recovery with half-quadratic regularization,
IP(4), No. 7, July 1995, pp. 932-946.
IEEE DOI
0402
BibRef
Zhu, D.[Daan],
Razaz, M.[Moe],
Fisher, M.[Mark],
An adaptive algorithm for image restoration using combined penalty
functions,
PRL(27), No. 12, September 2006, pp. 1336-1341.
Elsevier DOI
0606
Gradient descent; Penalized likelihood; Combined penalty function;
Regularization
BibRef
Zhu, D.[Daan],
Razaz, M.,
Lee, R.,
A robust regularised restoration algorithm based on Topkis-Veinott
optimisation method,
ICPR04(IV: 705-708).
IEEE DOI
0409
BibRef
And:
A Landweber Algorithm for 3D Confocal Microscopy Restoration,
ICPR04(I: 552-555).
IEEE DOI
0409
BibRef
Pan, P.,
Schonfeld, D.,
Image Reconstruction and Multidimensional Field Estimation From
Randomly Scattered Sensors,
IP(17), No. 1, January 2008, pp. 94-99.
IEEE DOI
0712
Image reconstruction from photon-limited images and field
estimation from scattered sensors.
BibRef
Sha, L.,
Schonfeld, D.,
Wang, J.,
Graph Laplacian Regularization With Sparse Coding for Image
Restoration and Representation,
CirSysVideo(30), No. 7, July 2020, pp. 2000-2014.
IEEE DOI
2007
Image restoration, Image coding, Laplace equations,
Clustering algorithms, Image edge detection, Encoding,
image decomposition
BibRef
Bao, P.[Paul],
Hong, S.W.[Sung-Wai],
Image Restoration Based on Generalized Finite Automata Encoded Edge
Preserving Regularization,
IJIG(2), No. 3, July 2002, pp. 425-439.
0207
BibRef
Pan, M.C.[Min-Cheng],
Image restoration through regularization based on error energy
minimization,
IJIST(20), No. 4, December 2010, pp. 308-315.
DOI Link
1011
BibRef
Bredies, K.[Kristian],
Kunisch, K.[Karl],
Pock, T.[Thomas],
Total Generalized Variation,
SIIMS(3), No. 3, 2010, pp. 492-526.
DOI Link bounded variation, total generalized variation, tensor fields;
regularization, image denoising
BibRef
1000
Kunisch, K.[Karl],
Pock, T.[Thomas],
A Bilevel Optimization Approach for Parameter Learning in Variational
Models,
SIIMS(6), No. 2, 2013, pp. 938-983.
DOI Link
1307
BibRef
Allard, W.K.[William K.],
Total Variation Regularization For Image Denoising, III. Examples.,
SIIMS(2), No. 2, 2009, pp. 532-568.
total variation, regularization, denoising
DOI Link
0905
BibRef
Lu, C.W.,
Image restoration and decomposition using nonconvex non-smooth
regularisation and negative Hilbert-Sobolev norm,
IET-IPR(6), No. 6, 2012, pp. 706-716.
DOI Link
1210
BibRef
Chen, X.J.[Xiao-Jun],
Ng, M.K.,
Zhang, C.[Chao],
Non-Lipschitz L_p-Regularization and Box Constrained Model for Image
Restoration,
IP(21), No. 12, December 2012, pp. 4709-4721.
IEEE DOI
1212
BibRef
Deng, L.J.[Liang-Jian],
Huang, T.Z.[Ting-Zhu],
Zhao, X.L.[Xi-Le],
Zhao, L.[Liang],
Wang, S.[Si],
Signal restoration combining Tikhonov regularization and multilevel
method with thresholding strategy,
JOSA-A(30), No. 5, May 2013, pp. 948-955.
DOI Link
1305
See also Regularization of Ill-Posed Problems, The.
BibRef
Lanza, A.[Alessandro],
Morigi, S.[Serena],
Sgallari, F.[Fiorella],
Convex Image Denoising via Non-convex Regularization with Parameter
Selection,
JMIV(56), No. 2, October 2016, pp. 195-220.
Springer DOI
1609
BibRef
Earlier:
Convex Image Denoising via Non-Convex Regularization,
SSVM15(666-677).
Springer DOI
1506
BibRef
Selesnick, I.[Ivan],
Lanza, A.[Alessandro],
Morigi, S.[Serena],
Sgallari, F.[Fiorella],
Non-convex Total Variation Regularization for Convex Denoising of
Signals,
JMIV(62), No. 6-7, July 2020, pp. 825-841.
Springer DOI
2007
BibRef
Lanza, A.[Alessandro],
Sciacchitano, F.[Federica],
Morigi, S.[Serena],
Sgallari, F.[Fiorella],
A Unified Framework for the Restoration of Images Corrupted by Additive
White Noise,
SSVM17(498-510).
Springer DOI
1706
BibRef
Liu, X.M.[Xian-Ming],
Zhai, D.M.[De-Ming],
Zhao, D.B.[De-Bin],
Zhai, G.T.[Guang-Tao],
Gao, W.[Wen],
Progressive Image Denoising Through Hybrid Graph Laplacian
Regularization: A Unified Framework,
IP(23), No. 4, April 2014, pp. 1491-1503.
IEEE DOI
1404
Laplace transforms
BibRef
Jalab, H.A.[Hamid A.],
Ibrahim, R.W.[Rabha W.],
Fractional Conway Polynomials for Image Denoising with Regularized
Fractional Power Parameters,
JMIV(51), No. 3, March 2015, pp. 442-450.
WWW Link.
1504
BibRef
Gavaskar, R.G.[Ruturaj G.],
Athalye, C.D.[Chirayu D.],
Chaudhury, K.N.[Kunal N.],
On Plug-and-Play Regularization Using Linear Denoisers,
IP(30), 2021, pp. 4802-4813.
IEEE DOI
2105
BibRef
Nair, P.[Pravin],
Chaudhury, K.N.[Kunal N.],
Plug-and-Play Regularization Using Linear Solvers,
IP(31), 2022, pp. 6344-6355.
IEEE DOI
2210
Kernel, Image reconstruction, Convergence, Superresolution,
Signal processing algorithms, Optimization, Linear systems,
Krylov solver
BibRef
Cohen, R.[Regev],
Elad, M.[Michael],
Milanfar, P.[Peyman],
Regularization by Denoising via Fixed-Point Projection (RED-PRO),
SIIMS(14), No. 3, 2021, pp. 1374-1406.
DOI Link
2110
BibRef
Yu, Z.[Zhi],
Luo, Y.H.[Yi-Hao],
Liu, Z.F.[Zhi-Fa],
Zhou, G.X.[Guo-Xu],
Contour information regularized tensor ring completion for realistic
image restoration,
IET-IPR(16), No. 13, 2022, pp. 3499-3506.
DOI Link
2210
BibRef
Cheng, K.H.[Kuan-Hong],
Prasad, S.[Shitala],
Chai, T.T.[Ting-Ting],
Xue, W.W.[Wang-Wang],
Zhao, D.[Dong],
Local Curvature Optimization for Self-Supervised Image Restoration,
SPLetters(31), 2024, pp. 1294-1298.
IEEE DOI
2405
Image restoration, Noise, Electronics packaging, Optimization,
Training, Noise reduction, Image restoration, super resolution,
regularization
BibRef
Trottier, S.[Simon],
Bosse, J.[Jonathan],
A Relationship Between the False Alarm Probability and the Atomic
Norm Denoising Regularization Parameter for Line Spectral Estimation,
SPLetters(31), 2024, pp. 2410-2414.
IEEE DOI
2410
Radar, seismology, communications.
Noise reduction, Vectors, Gaussian noise, Estimation, Accuracy,
Signal to noise ratio, Optimization, Atomic norm minimization,
excursion probability of Gaussian random fields
BibRef
Cascarano, P.[Pasquale],
Benfenati, A.[Alessandro],
Kamilov, U.S.[Ulugbek S.],
Xu, X.J.[Xiao-Jian],
Constrained Regularization by Denoising With Automatic Parameter
Selection,
SPLetters(31), 2024, pp. 556-560.
IEEE DOI
2402
Standards, Image restoration, Noise reduction, Convex functions,
AWGN, Signal processing algorithms, Noise measurement,
discrepancy principle
BibRef
Sinha, A.[Arghya],
Chaudhury, K.N.[Kunal N.],
On the Strong Convexity of PnP Regularization Using Linear Denoisers,
SPLetters(31), 2024, pp. 2790-2794.
IEEE DOI
2410
Signal processing algorithms, Convergence, Kernel, Standards,
Convex functions, Superresolution, Inverse problems, Indexes, strong convexity
BibRef
Faye, E.C.[Elhadji C.],
Fall, M.D.[Mame Diarra],
Dobigeon, N.[Nicolas],
Regularization by Denoising: Bayesian Model and Langevin-Within-Split
Gibbs Sampling,
IP(34), 2025, pp. 221-234.
IEEE DOI
2501
Bayes methods, Noise reduction, Monte Carlo methods, Uncertainty,
Probabilistic logic, Imaging, Jacobian matrices, Inverse problems,
deep learning
BibRef
Takagi, T.[Tsukasa],
Ishizaki, S.[Shinya],
Maeda, S.I.[Shin-Ichi],
JPEG Information Regularized Deep Image Prior for Denoising,
ICIP23(380-384)
IEEE DOI
2312
BibRef
Zhang, M.Y.[Ming-Yan],
Zhang, M.L.[Ming-Li],
Zhao, F.[Feng],
Zhang, F.[Fan],
Liu, Y.P.[Ye-Peng],
Evans, A.[Alan],
Truncated Weighted Nuclear Norm Regularization and Sparsity for Image
Denoising,
ICIP23(1825-1829)
IEEE DOI
2312
BibRef
Shi, H.[Hui],
Traonmilin, Y.[Yann],
Aujol, J.F.[Jean-François],
Compressive Learning of Deep Regularization for Denoising,
SSVM23(162-174).
Springer DOI
2307
BibRef
Anantrasirichai, N.,
Burn, J.,
Bull, D.R.[David R.],
Projective image restoration using sparsity regularization,
ICIP13(1080-1084)
IEEE DOI
1402
Accuracy
BibRef
Sa, P.K.[Pankaj Kumar],
Majhi, B.[Banshidhar],
Adaptive edge preserving regularized image restoration,
ICIIP11(1-5).
IEEE DOI
1112
BibRef
Wu, X.J.[Xian-Jin],
Wang, R.S.[Run-Sheng],
Wang, C.[Cheng],
Regularized image restoration based on adaptively selecting parameter
and operator,
ICPR04(III: 662-665).
IEEE DOI
0409
BibRef
Gutierrez, J.,
Malo, J.,
Ferri, F.J.,
Perceptual regularization functionals for natural image restoration,
ICIP03(II: 989-992).
IEEE DOI
0312
BibRef
Fan, L.X.[Li-Xin],
Sung, K.K.[Kah Kay],
Towards Statistical Image Restoration:
Perceptual Grouping as Regularizing Operators,
PercOrg01(xx-yy).
0106
BibRef
Chapter on Computational Vision, Regularization, Connectionist, Morphology, Scale-Space, Perceptual Grouping, Wavelets, Color, Sensors, Optical, Laser, Radar continues in
Inverse Problems .