Honkavaara, E.,
Litkey, P.,
Nurminen, K.,
Automatic Storm Damage Detection in Forests Using High-Altitude
Photogrammetric Imagery,
RS(5), No. 3, March 2013, pp. 1405-1424.
DOI Link
1304
BibRef
Litkey, P.,
Nurminen, K.,
Honkavaara, E.,
Automatic Detection of Storm Damages Using High-Altitude
Photogrammetric Imaging,
Hannover13(195-200).
DOI Link
1308
BibRef
Negrón-Juárez, R.I.[Robinson I.],
Chambers, J.Q.[Jeffrey Q.],
Hurtt, G.C.[George C.],
Annane, B.[Bachir],
Cocke, S.[Stephen],
Powell, M.[Mark],
Stott, M.[Michael],
Goosem, S.[Stephen],
Metcalfe, D.J.[Daniel J.],
Saatchi, S.S.[Sassan S.],
Remote Sensing Assessment of Forest Disturbance across Complex
Mountainous Terrain: The Pattern and Severity of Impacts of Tropical
Cyclone Yasi on Australian Rainforests,
RS(6), No. 6, 2014, pp. 5633-5649.
DOI Link
1407
BibRef
Polewski, P.[Przemyslaw],
Yao, W.[Wei],
Heurich, M.[Marco],
Krzystek, P.[Peter],
Stilla, U.[Uwe],
Detection of fallen trees in ALS point clouds using a Normalized Cut
approach trained by simulation,
PandRS(105), No. 1, 2015, pp. 252-271.
Elsevier DOI
1506
Precision forestry
BibRef
Polewski, P.[Przemyslaw],
Yao, W.[Wei],
Heurich, M.[Marco],
Krzystek, P.[Peter],
Stilla, U.[Uwe],
Learning a constrained conditional random field for enhanced
segmentation of fallen trees in ALS point clouds,
PandRS(140), 2018, pp. 33-44.
Elsevier DOI
1805
CRF, Segmentation, Fallen tree detection, LIDAR
BibRef
Polewski, P.[Przemyslaw],
Yao, W.[Wei],
Heurich, M.[Marco],
Krzystek, P.[Peter],
Stilla, U.[Uwe],
Active learning approach to detecting standing dead trees from ALS
point clouds combined with aerial infrared imagery,
EarthObserv15(10-18)
IEEE DOI
1510
Entropy
BibRef
Duan, F.Z.[Fu-Zhou],
Wan, Y.C.[Yang-Chun],
Deng, L.[Lei],
A Novel Approach for Coarse-to-Fine Windthrown Tree Extraction Based
on Unmanned Aerial Vehicle Images,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Rüetschi, M.[Marius],
Small, D.[David],
Waser, L.T.[Lars T.],
Rapid Detection of Windthrows Using Sentinel-1 C-Band SAR Data,
RS(11), No. 2, 2019, pp. xx-yy.
DOI Link
1902
Storm damage.
BibRef
Fagherazzi, S.[Sergio],
Nordio, G.[Giovanna],
Munz, K.[Keila],
Catucci, D.[Daniele],
Kearney, W.S.[William S.],
Variations in Persistence and Regenerative Zones in Coastal Forests
Triggered by Sea Level Rise and Storms,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Yao, W.[Wutao],
Ma, Y.[Yong],
Chen, F.[Fu],
Xiao, Z.[Zhishu],
Shu, Z.[Zufei],
Chen, L.J.[Li-Jun],
Xiao, W.H.[Wen-Hong],
Liu, J.B.[Jian-Bo],
Jiang, L.Y.[Li-Yuan],
Zhang, S.Y.[Shu-Yan],
Analysis of Ice Storm Impact on and Post-Disaster Recovery of Typical
Subtropical Forests in Southeast China,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Peter, J.S.[Joseph St.],
Anderson, C.[Chad],
Drake, J.[Jason],
Medley, P.[Paul],
Spatially Quantifying Forest Loss at Landscape-scale Following a
Major Storm Event,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Kislov, D.E.[Dmitry E.],
Korznikov, K.A.[Kirill A.],
Automatic Windthrow Detection Using Very-High-Resolution Satellite
Imagery and Deep Learning,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
McCarthy, M.J.[Matthew J.],
Jessen, B.[Brita],
Barry, M.J.[Michael J.],
Figueroa, M.[Marissa],
McIntosh, J.[Jessica],
Murray, T.[Tylar],
Schmid, J.[Jill],
Muller-Karger, F.E.[Frank E.],
Automated High-Resolution Time Series Mapping of Mangrove Forests
Damaged by Hurricane Irma in Southwest Florida,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Deigele, W.[Wolfgang],
Brandmeier, M.[Melanie],
Straub, C.[Christoph],
A Hierarchical Deep-Learning Approach for Rapid Windthrow Detection
on PlanetScope and High-Resolution Aerial Image Data,
RS(12), No. 13, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Tomppo, E.[Erkki],
Ronoud, G.[Ghasem],
Antropov, O.[Oleg],
Hytönen, H.[Harri],
Praks, J.[Jaan],
Detection of Forest Windstorm Damages with Multitemporal SAR Data:
A Case Study: Finland,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Olmo, V.[Valentina],
Tordoni, E.[Enrico],
Petruzzellis, F.[Francesco],
Bacaro, G.[Giovanni],
Altobelli, A.[Alfredo],
Use of Sentinel-2 Satellite Data for Windthrows Monitoring and
Delimiting: The Case of 'Vaia' Storm in Friuli Venezia Giulia Region
(North-Eastern Italy),
RS(13), No. 8, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Polewski, P.[Przemyslaw],
Shelton, J.[Jacquelyn],
Yao, W.[Wei],
Heurich, M.[Marco],
Instance segmentation of fallen trees in aerial color infrared
imagery using active multi-contour evolution with fully convolutional
network-based intensity priors,
PandRS(178), 2021, pp. 297-313.
Elsevier DOI
2108
simulated annealing, U-net, sample consensus,
precision forestry, energy minimization
BibRef
Rodríguez, A.C.[Andrés C.],
Caye Daudt, R.[Rodrigo],
d'Aronco, S.[Stefano],
Schindler, K.[Konrad],
Wegner, J.D.[Jan D.],
Robust Damage Estimation of Typhoon Goni on Coconut Crops with
Sentinel-2 Imagery,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Laurin, G.V.[Gaia Vaglio],
Puletti, N.[Nicola],
Tattoni, C.[Clara],
Ferrara, C.[Carlotta],
Pirotti, F.[Francesco],
Estimated Biomass Loss Caused by the Vaia Windthrow in Northern
Italy: Evaluation of Active and Passive Remote Sensing Options,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Reder, S.[Stefan],
Mund, J.P.[Jan-Peter],
Albert, N.[Nicole],
Waßermann, L.[Lilli],
Miranda, L.[Luis],
Detection of Windthrown Tree Stems on UAV-Orthomosaics Using U-Net
Convolutional Networks,
RS(14), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Delaporte, B.[Baptiste],
Ibanez, T.[Thomas],
Despinoy, M.[Marc],
Mangeas, M.[Morgan],
Menkes, C.[Christophe],
Tropical Cyclone Impact and Forest Resilience in the Southwestern
Pacific,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Furukawa, F.[Flavio],
Morimoto, J.[Junko],
Yoshimura, N.[Nobuhiko],
Koi, T.[Takashi],
Shibata, H.[Hideaki],
Kaneko, M.[Masami],
UAV Video-Based Approach to Identify Damaged Trees in Windthrow Areas,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, X.[Xu],
Jiao, H.B.[Hong-Bo],
Chen, G.S.[Guang-Sheng],
Shen, J.N.[Jia-Ning],
Huang, Z.[Zihao],
Luo, H.Y.[Hai-Yan],
Forest Damage by Super Typhoon Rammasun and Post-Disturbance Recovery
Using Landsat Imagery and the Machine-Learning Method,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Li, Z.C.[Zong-Chen],
Yang, R.[Ruoli],
Cai, W.W.[Wei-Wei],
Xue, Y.F.[Yong-Fei],
Hu, Y.W.[Yao-Wen],
Li, L.J.[Liu-Jun],
LLAM-MDCNet for Detecting Remote Sensing Images of Dead Tree Clusters,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Heinaro, E.[Einari],
Tanhuanpää, T.[Topi],
Vastaranta, M.[Mikko],
Yrttimaa, T.[Tuomas],
Kukko, A.[Antero],
Hakala, T.[Teemu],
Mattsson, T.[Teppo],
Holopainen, M.[Markus],
Evaluating Factors Impacting Fallen Tree Detection from Airborne
Laser Scanning Point Clouds,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Klauberg, C.[Carine],
Vogel, J.[Jason],
Dalagnol, R.[Ricardo],
Ferreira, M.P.[Matheus Pinheiro],
Hamamura, C.[Caio],
Broadbent, E.[Eben],
Silva, C.A.[Carlos Alberto],
Post-Hurricane Damage Severity Classification at the Individual Tree
Level Using Terrestrial Laser Scanning and Deep Learning,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Turner, H.C.[Hannah C.],
Galford, G.L.[Gillian L.],
Lopez, N.H.[Norgis Hernandez],
Méndez, A.F.[Armando Falcón],
Borroto-Escuela, D.Y.[Daily Yanetsy],
Ramos, I.H.[Idania Hernández],
González-Díaz, P.[Patricia],
Extent, Severity, and Temporal Patterns of Damage to Cuba's
Ecosystems following Hurricane Irma: MODIS and Sentinel-2 Hurricane
Disturbance Vegetation Anomaly (HDVA),
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Emmert, L.[Luciano],
Negrón-Juárez, R.I.[Robinson Isaac],
Chambers, J.Q.[Jeffrey Quintin],
dos Santos, J.[Joaquim],
Lima, A.J.N.[Adriano José Nogueira],
Trumbore, S.[Susan],
Marra, D.M.[Daniel Magnabosco],
Sensitivity of Optical Satellites to Estimate Windthrow
Tree-Mortality in a Central Amazon Forest,
RS(15), No. 16, 2023, pp. 4027.
DOI Link
2309
BibRef
Nasimi, M.[Mitra],
Wood, R.L.[Richard L.],
Using Deep Learning and Advanced Image Processing for the Automated
Estimation of Tornado-Induced Treefall,
RS(16), No. 7, 2024, pp. 1130.
DOI Link
2404
BibRef
Matejcíková, J.[Júlia],
Vébrová, D.[Dana],
Surový, P.[Peter],
Comparative Analysis of Machine Learning Techniques and Data Sources
for Dead Tree Detection: What Is the Best Way to Go?,
RS(16), No. 16, 2024, pp. 3086.
DOI Link
2408
BibRef
Pirotti, F.,
Travaglini, D.,
Giannetti, F.,
Kutchartt, E.,
Bottalico, F.,
Chirici, G.,
Kernel Feature Cross-correlation For Unsupervised Quantification Of
Damage From Windthrow In Forests,
ISPRS16(B7: 17-22).
DOI Link
1610
BibRef
Saarinen, N.,
Vastaranta, M.,
Honkavaara, E.,
Wulder, M.A.,
White, J.C.,
Litkey, P.,
Holopainen, M.,
Hyyppä, J.,
Mapping the Risk of Forest Wind Damage Using Airborne Scanning LiDAR,
PIA15(189-196).
DOI Link
1504
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Eucalypt Trees, Eucalyptus .