7.10.11 Statistical Image Models

Chapter Contents (Back)
Image Models.

Kretzmer, E.R.,
Statistics of Television Signals,
Bell System Tech.(31), No. 4, July 1952, pp. 7551-763. BibRef 5207

Swerling, P.,
Statistical Properties of the Contours of Random Surfaces,
IT(8), No. 3, July 1962, pp. 315-321. BibRef 6207

Pawula, R.F.,
Comments on 'Statistical Properties of the Contours of Random Surfaces',
IT(9), No. 3, July 1963, pp. 208-209. BibRef 6307

Hunt, B.R., Cannon, T.M.,
Nonstationary Assumptions for Gaussian Models of Images,
SMC(6), December 1976, pp. 876-881.
See also Comments on Nonstationary Assumptions for Gaussian Models of Images. BibRef 7612

Hunt, B.R.,
Nonstationary Statistical Image Models (and Their Application to Image Data compression),
CGIP(12), No. 2, February 1980, pp. 173-186.
Elsevier DOI BibRef 8002

Trussell, H.J., Kruger, R.P.,
Comments on Nonstationary Assumptions for Gaussian Models of Images,
SMC(8), 1978, pp. 579-582.
See also Nonstationary Assumptions for Gaussian Models of Images. BibRef 7800

Panda, D.P.[Durga P.],
Statistical Properties of Thresholded Images,
CGIP(8), No. 3, December 1978, pp. 334-354.
Elsevier DOI BibRef 7812

McClure, D.E.[Donald E.],
Image models in pattern theory,
CGIP(12), No. 4, April 1980, pp. 309-325.
Elsevier DOI 0501
BibRef

Kadota, T.T.,
Piecewise Linear Random Paths on a Plane and a Central Limit Theorem,
IT(1), 1983, pp. 241-245. BibRef 8300

Kadota, T.T., Seery, J.B.,
Probability Distributions of Randomly Moving Objects on a Plane,
IT(1), 1983, pp. 756-761. BibRef 8300

Kashyap, R.L.,
Orientation of Anisotropic Random Fields and Images,
PRL(2), 1984, pp. 249-256. BibRef 8400

Dunn, S.M., Keizer, R.L., Rosenfeld, A.,
Random Field Identification from a Sample: Experimental Results,
PRL(8), 1988, pp. 15-20. BibRef 8800

Jeulin, D.,
Special Section On Random Models In Imaging,
JEI(6), No. 1, January 1997, pp. 6-6. 9807
BibRef

Pikaz, A.[Arie], Averbuch, A.[Amir],
On the Relation between Second-Order Statistics, Connectivity Analysis, and Percolation Models in Digital Textures,
GMIP(60), No. 3, May 1998, pp. 226-232. BibRef 9805

Aykroyd, R.G.[Robert G.],
Bayesian Estimation for Homogeneous and Inhomogeneous Gaussian Random Fields,
PAMI(20), No. 5, May 1998, pp. 533-539.
IEEE DOI 9806
BibRef

Sun, C.M.[Chang-Ming],
Fast Algorithm for Local Statistics Calculation for N -Dimensional Images,
RealTimeImg(7), No. 6, December 2001, pp. 519-527.
DOI Link 0202
BibRef

Eom, K.B.,
Long-correlation image models for textures with circular and elliptical correlation structures,
IP(10), No. 7, July 2001, pp. 1047-1055.
IEEE DOI 0108
BibRef

Srivastava, A., Lee, A.B., Simoncelli, E.P., Zhu, S.C.,
On Advances in Statistical Modeling of Natural Images,
JMIV(18), No. 1, January 2003, pp. 17-33.
DOI Link 0301
BibRef

Lee, A.B.[Ann B.], Pedersen, K.S.[Kim S.], Mumford, D.[David],
The Nonlinear Statistics of High-Contrast Patches in Natural Images,
IJCV(54), No. 1-3, August 2003, pp. 83-103.
DOI Link 0306
BibRef
Earlier:
The Complex statistics of high contrast patches in natural images,
SCTV01(xx-yy). 0106
BibRef

Steenstrup Pedersen, K.[Kim], Duits, R.[Remco], Nielsen, M.[Mads],
On a Kernels, Lévy Processes, and Natural Image Statistics,
ScaleSpace05(468-479).
Springer DOI 0505
BibRef

Deléchelle, É.[Éric], Nunes, J.C.[Jean-Claude], Lemoine, J.[Jacques],
Empirical mode decomposition synthesis of fractional processes in 1D- and 2D-space,
IVC(23), No. 9, 1 September 2005, pp. 799-806.
Elsevier DOI 0508
Gaussian, Brownian texture models. BibRef

Niang, O., Thioune, A., Gueirea, M.C.E., Deléchelle, É.[Éric], Lemoine, J.[Jacques],
Partial Differential Equation-Based Approach for Empirical Mode Decomposition: Application on Image Analysis,
IP(21), No. 9, September 2012, pp. 3991-4001.
IEEE DOI 1208
BibRef

Lillholm, M.[Martin], Nielsen, M.[Mads], Griffin, L.D.[Lewis D.],
Feature-Based Image Analysis,
IJCV(52), No. 2-3, May-June 2003, pp. 73-95.
DOI Link 0301

See also Superficial and deep structure in linear diffusion scale space: isophotes, critical points and separatrices. BibRef

Lillholm, M.[Martin], Griffin, L.D.[Lewis D.],
Statistics and category systems for the shape index descriptor of local 2nd order natural image structure,
IVC(27), No. 6, 4 May 2009, pp. 771-781.
Elsevier DOI 0904
BibRef
Earlier:
Novel image feature alphabets for object recognition,
ICPR08(1-4).
IEEE DOI 0812
Local image structure; Image features; Natural image statistics BibRef

Griffin, L.D.[Lewis D.], Lillholm, M.[Martin], Crosier, M.S.[Mike S.], van Sande, J.[Justus],
Basic Image Features (BIFs) Arising from Approximate Symmetry Type,
SSVM09(343-355).
Springer DOI 0906
BibRef

Griffin, L.D.[Lewis D.], Lillholm, M.[Martin],
Symmetry Sensitivities of Derivative-of-Gaussian Filters,
PAMI(32), No. 6, June 2010, pp. 1072-1083.
IEEE DOI 1004
Filters can be sensitive to a symmetry. BibRef

Nielsen, M., Lillholm, M.,
What do features tell about images?,
ScaleSpace01(xx-yy). 0106
BibRef

Crosier, M.S.[Michael S.], Griffin, L.D.[Lewis D.],
Using Basic Image Features for Texture Classification,
IJCV(88), No. 3, July 2010, pp. xx-yy.
Springer DOI 1003
BibRef
Earlier:
Texture classification with a dictionary of basic image features,
CVPR08(1-7).
IEEE DOI 0806
BibRef

Griffin, L.D.[Lewis D.], Lillholm, M.[Martin],
Hypotheses for Image Features, Icons and Textons,
IJCV(70), No. 3, December 2006, pp. 213-230.
Springer DOI 0608
BibRef
Earlier:
Image Features and the 1-D, 2nd Order Gaussian Derivative Jet,
ScaleSpace05(26-37).
Springer DOI 0505
BibRef

Griffin, L.D.[Lewis D.], Lillholm, M.[Martin],
Mode Estimation Using Pessimistic Scale Space Tracking,
ScaleSpace03(266-280).
Springer DOI 0310
BibRef

Tagliati, E., Griffin, L.D.,
Features in scale-space: progress on the 2D 2nd order jet,
ScaleSpace01(xx-yy). 0106
BibRef

Griffin, L.D.[Lewis D.],
The Second Order Local-Image-Structure Solid,
PAMI(29), No. 8, August 2007, pp. 1355-1366.
IEEE DOI 0707
BibRef

Griffin, L.D.[Lewis D.],
The Atlas Structure of Images,
PAMI(41), No. 1, January 2019, pp. 234-245.
IEEE DOI 1812
Apertures, IP networks, Glass, Filtering theory, Kernel, Convolution, Image analysis, image representation, keypoints BibRef

Lillholm, M.[Martin], Griffin, L.D.[Lewis D.],
Maximum Likelihood Metameres for Local 2nd Order Image Structure of Natural Images,
SSVM07(394-405).
Springer DOI 0705
BibRef

Griffin, L.D.[Lewis D.],
Symmetries of 1-D Images,
JMIV(31), No. 2-3, July 2008, pp. 157-164.
WWW Link. 0711
BibRef

Griffin, L.D.[Lewis D.],
Symmetries of 2-D Images: Cases without Periodic Translations,
JMIV(34), No. 3, July 2009, pp. xx-yy.
Springer DOI 0906
BibRef

Marchant, R.[Ross], Jackway, P.T.[Paul T.],
A Sinusoidal Image Model Derived from the Circular Harmonic Vector,
JMIV(57), No. 2, February 2017, pp. 138-163.
WWW Link. 1702
BibRef
Earlier:
Feature Detection from the Maximal Response to a Spherical Quadrature Filter Set,
DICTA12(1-8).
IEEE DOI 1303
BibRef

Bu, X.Y.[Xing-Yuan], Wu, Y.W.[Yu-Wei], Gao, Z.[Zhi], Jia, Y.D.[Yun-De],
Deep convolutional network with locality and sparsity constraints for texture classification,
PR(91), 2019, pp. 34-46.
Elsevier DOI 1904
Deep convolutional feature, Sparse coding, Locality-aware, Texture classification BibRef


Samuel, K.G.G.[Kegan G.G.], Tappen, M.F.[Marshall F.],
Learning optimized MAP estimates in continuously-valued MRF models,
CVPR09(477-484).
IEEE DOI 0906
BibRef

Tappen, M.F.[Marshall F.], Samuel, K.G.G.[Kegan G. G.], Dean, C.V.[Craig V.], Lyle, D.M.[David M.],
The Logistic Random Field: A convenient graphical model for learning parameters for MRF-based labeling,
CVPR08(1-8).
IEEE DOI 0806
BibRef

Liu, C.[Ce], Sharan, L.[Lavanya], Adelson, E.H.[Edward H.], Rosenholtz, R.[Ruth],
Exploring features in a Bayesian framework for material recognition,
CVPR10(239-246).
IEEE DOI 1006
glass, metal, wood, etc. from single image of surface. BibRef

Tappen, M.F.[Marshall F.], Liu, C.[Ce], Adelson, E.H.[Edward H.], Freeman, W.T.[William T.],
Learning Gaussian Conditional Random Fields for Low-Level Vision,
CVPR07(1-8).
IEEE DOI 0706
BibRef

Zheng, H.W.[Hong-Wei], Hellwich, O.[Olaf],
Extended Mumford-Shah Regularization in Bayesian Estimation for Blind Image Deconvolution and Segmentation,
IWCIA06(144-158).
Springer DOI 0606

See also Optimal Approximations by Piecewise Smooth Functions and Variational Problems. BibRef

Xu, C.L.[Cun Lu], Chen, Y.Q.[Yan Qiu],
Statistical landscape features for texture classification,
ICPR04(I: 676-679).
IEEE DOI 0409
BibRef

Sullins, J.R.[John R.],
Distributed learning of texture classification,
ECCV90(347-358).
Springer DOI 9004
BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Dynamic Textures .


Last update:Aug 28, 2024 at 16:02:19