Dópido, I.[Inmaculada],
Li, J.[Jun],
Marpu, P.R.[Prashanth Reddy],
Plaza, A.[Antonio],
Dias, J.M.B.[José M. Bioucas],
Benediktsson, J.A.[Jon Atli],
Semisupervised Self-Learning for Hyperspectral Image Classification,
GeoRS(51), No. 7, 2013, pp. 4032-4044.
IEEE DOI Support vector machines; semisupervised self-learning
1307
BibRef
Guo, X.,
Huang, X.,
Zhang, L.,
Zhang, L.,
Plaza, A.,
Benediktsson, J.A.,
Support Tensor Machines for Classification of Hyperspectral Remote
Sensing Imagery,
GeoRS(54), No. 6, June 2016, pp. 3248-3264.
IEEE DOI
1606
geophysical image processing
BibRef
Tan, K.[Kun],
Li, E.[Erzhu],
Du, Q.[Qian],
Du, P.J.[Pei-Jun],
An efficient semi-supervised classification approach for
hyperspectral imagery,
PandRS(97), No. 1, 2014, pp. 36-45.
Elsevier DOI
1410
Hyperspectral
BibRef
Tan, K.[Kun],
Hu, J.[Jun],
Li, J.[Jun],
Du, P.J.[Pei-Jun],
A novel semi-supervised hyperspectral image classification approach
based on spatial neighborhood information and classifier combination,
PandRS(105), No. 1, 2015, pp. 19-29.
Elsevier DOI
1506
Semi-supervised classification
BibRef
Tan, K.[Kun],
Zhu, J.S.[Ji-Shuai],
Du, Q.[Qian],
Wu, L.X.[Li-Xin],
Du, P.J.[Pei-Jun],
A Novel Tri-Training Technique for Semi-Supervised Classification of
Hyperspectral Images Based on Diversity Measurement,
RS(8), No. 9, 2016, pp. 749.
DOI Link
1610
BibRef
Ou, D.[Depin],
Tan, K.[Kun],
Du, Q.[Qian],
Zhu, J.S.[Ji-Shuai],
Wang, X.[Xue],
Chen, Y.[Yu],
A Novel Tri-Training Technique for the Semi-Supervised Classification
of Hyperspectral Images Based on Regularized Local Discriminant
Embedding Feature Extraction,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link
1903
BibRef
He, Z.[Zhi],
Liu, L.[Lin],
Zhou, S.H.[Su-Hong],
Shen, Y.[Yi],
Learning Group-Based Sparse and Low-Rank Representation for
Hyperspectral Image Classification,
PR(60), No. 1, 2016, pp. 1041-1056.
Elsevier DOI
1609
Classification
BibRef
He, Z.[Zhi],
Li, J.[Jun],
Liu, L.[Lin],
Tensor Block-Sparsity Based Representation for Spectral-Spatial
Hyperspectral Image Classification,
RS(8), No. 8, 2016, pp. 636.
DOI Link
1609
BibRef
Lu, Z.W.[Zhi-Wu],
Wang, L.W.[Li-Wei],
Noise-robust semi-supervised learning via fast sparse coding,
PR(48), No. 2, 2015, pp. 605-612.
Elsevier DOI
1411
Graph-based semi-supervised learning
BibRef
Romaszewski, M.[Michal],
Glomb, P.[Przemyslaw],
Cholewa, M.[Michal],
Semi-supervised hyperspectral classification from a small number of
training samples using a co-training approach,
PandRS(121), No. 1, 2016, pp. 60-76.
Elsevier DOI
1609
Hyperspectral classification
BibRef
Xu, L.,
Clausi, D.A.,
Li, F.,
Wong, A.,
Weakly Supervised Classification of Remotely Sensed Imagery Using
Label Constraint and Edge Penalty,
GeoRS(55), No. 3, March 2017, pp. 1424-1436.
IEEE DOI
1703
Correlation
BibRef
Li, F.,
Clausi, D.A.,
Xu, L.,
Wong, A.,
ST-IRGS: A Region-Based Self-Training Algorithm Applied to
Hyperspectral Image Classification and Segmentation,
GeoRS(56), No. 1, January 2018, pp. 3-16.
IEEE DOI
1801
Gaussian distribution, hyperspectral imaging,
image classification, image segmentation,
scene classification
BibRef
Xue, Z.H.[Zhao-Hui],
Du, P.J.[Pei-Jun],
Su, H.J.[Hong-Jun],
Zhou, S.G.[Shao-Guang],
Discriminative Sparse Representation for Hyperspectral Image
Classification: A Semi-Supervised Perspective,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Ma, L.,
Crawford, M.M.,
Tian, J.,
Local Manifold Learning-Based k-Nearest-Neighbor for Hyperspectral
Image Classification,
GeoRS(48), No. 11, November 2010, pp. 4099-4109.
IEEE DOI
1011
BibRef
Ma, L.[Li],
Crawford, M.M.,
Yang, X.Q.[Xiao-Quan],
Guo, Y.[Yan],
Local-Manifold-Learning-Based Graph Construction for Semisupervised
Hyperspectral Image Classification,
GeoRS(53), No. 5, May 2015, pp. 2832-2844.
IEEE DOI
1502
computational geometry
BibRef
Ma, L.[Li],
Ma, A.D.[An-Dong],
Ju, C.[Cai],
Li, X.M.[Xing-Mei],
Graph-Based Semi-Supervised Learning for Spectral-Spatial
Hyperspectral Image Classification,
PRL(83, Part 2), No. 1, 2016, pp. 133-142.
Elsevier DOI
1609
Hyperspectral images
BibRef
Shao, Y.J.[Yuan-Jie],
Sang, N.[Nong],
Gao, C.X.[Chang-Xin],
Ma, L.[Li],
Probabilistic class structure regularized sparse representation graph
for semi-supervised hyperspectral image classification,
PR(63), No. 1, 2017, pp. 102-114.
Elsevier DOI
1612
Graph
BibRef
Shao, Y.J.[Yuan-Jie],
Sang, N.[Nong],
Gao, C.X.[Chang-Xin],
Representation Space-Based Discriminative Graph Construction for
Semisupervised Hyperspectral Image Classification,
SPLetters(25), No. 1, January 2018, pp. 35-39.
IEEE DOI
1801
geophysical image processing, graph theory,
hyperspectral imaging, image classification,
semisupervised learning (SSL)
BibRef
Shao, Y.J.[Yuan-Jie],
Sang, N.[Nong],
Gao, C.X.[Chang-Xin],
Ma, L.[Li],
Spatial and Class Structure Regularized Sparse Representation Graph
for Semi-Supervised Hyperspectral Image Classification,
PR(81), 2018, pp. 81-94.
Elsevier DOI
1806
Spatial regularization, Probabilistic class structure,
Sparse representation (SR), Semi-supervised learning (SSL), Hyperspectral image (HSI) classification
BibRef
Kong, Y.[Yi],
Wang, X.S.[Xue-Song],
Cheng, Y.[Yuhu],
Chen, C.L.P.[C. L. Philip],
Hyperspectral Imagery Classification Based on Semi-Supervised Broad
Learning System,
RS(10), No. 5, 2018, pp. xx-yy.
DOI Link
1806
BibRef
Zhao, G.X.[Gui-Xin],
Wang, X.S.[Xue-Song],
Kong, Y.[Yi],
Cheng, Y.[Yuhu],
Spectral-Spatial Joint Classification of Hyperspectral Image Based on
Broad Learning System,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Hu, X.P.[Xiao-Pei],
Zhao, G.X.[Gui-Xin],
Dong, A.[Aimei],
Lv, G.H.[Guo-Hua],
Zhai, Y.[Yi],
Guo, Y.[Ying],
Dong, X.J.[Xiang-Jun],
Few-Shot Hyperspectral Image Classification with Spectral-Spatial
Feature Fusion Based on Fuzzy Broad Learning System,
ICIP23(3160-3164)
IEEE DOI
2312
BibRef
Guo, Y.[Ying],
He, M.Y.[Ming-Yi],
Fan, B.[Bin],
Grid-Transformer for Few-Shot Hyperspectral Image Classification,
ICIP23(755-759)
IEEE DOI
2312
BibRef
Cao, M.X.[Meng-Xin],
Zhao, G.X.[Gui-Xin],
Dong, A.[Aimei],
Lv, G.H.[Guo-Hua],
Guo, Y.[Ying],
Dong, X.J.[Xiang-Jun],
Few-Shot Hyperspectral Image Classification Based on Cross-Domain
Spectral Semantic Relation Transformer,
ICIP23(1375-1379)
IEEE DOI
2312
BibRef
Xie, F.D.[Fu-Ding],
Hu, D.C.[Dong-Cui],
Li, F.F.[Fang-Fei],
Yang, J.[Jun],
Liu, D.S.[De-Shan],
Semi-Supervised Classification for Hyperspectral Images Based on
Multiple Classifiers and Relaxation Strategy,
IJGI(7), No. 7, 2018, pp. xx-yy.
DOI Link
1808
BibRef
Wu, Y.[Yue],
Mu, G.F.[Gui-Feng],
Qin, C.[Can],
Miao, Q.G.[Qi-Guang],
Ma, W.P.[Wen-Ping],
Zhang, X.R.[Xiang-Rong],
Semi-Supervised Hyperspectral Image Classification via
Spatial-Regulated Self-Training,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
He, F.[Fang],
Wang, R.[Rong],
Jia, W.M.[Wei-Min],
Fast semi-supervised learning with anchor graph for large
hyperspectral images,
PRL(130), 2020, pp. 319-326.
Elsevier DOI
2002
Hyperspectral images (HSI) classification,
Graph-based semi-supervised learning (SSL), Anchor graph
BibRef
Shaik, R.U.[Riyaaz Uddien],
Unni, A.[Aiswarya],
Zeng, W.P.[Wei-Ping],
Quantum Based Pseudo-Labelling for Hyperspectral Imagery:
A Simple and Efficient Semi-Supervised Learning Method for
Machine Learning Classifiers,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Iterative, Hierarchical Clustering Techniques .