Farag, A.,
Lu, L.,
Roth, H.R.,
Liu, J.,
Turkbey, E.,
Summers, R.M.,
A Bottom-Up Approach for Pancreas Segmentation Using Cascaded
Superpixels and (Deep) Image Patch Labeling,
IP(26), No. 1, January 2017, pp. 386-399.
IEEE DOI
1612
biological organs
BibRef
Wong, K.C.L.,
Summers, R.M.,
Kebebew, E.,
Yao, J.,
Pancreatic Tumor Growth Prediction With Elastic-Growth Decomposition,
Image-Derived Motion, and FDM-FEM Coupling,
MedImg(36), No. 1, January 2017, pp. 111-123.
IEEE DOI
1701
Biological system modeling
BibRef
Gibson, E.,
Giganti, F.,
Hu, Y.,
Bonmati, E.,
Bandula, S.,
Gurusamy, K.,
Davidson, B.,
Pereira, S.P.,
Clarkson, M.J.,
Barratt, D.C.,
Automatic Multi-Organ Segmentation on Abdominal CT With Dense
V-Networks,
MedImg(37), No. 8, August 2018, pp. 1822-1834.
IEEE DOI
1808
Image segmentation, Computed tomography, Liver, Kidney,
Pancreas, Abdominal CT, segmentation,
gallbladder
BibRef
Balasubramanian, A.D.[Aruna Devi],
Murugan, P.R.[Pallikonda Rajasekaran],
Thiyagarajan, A.P.[Arun Prasath],
Analysis and classification of malignancy in pancreatic magnetic
resonance images using neural network techniques,
IJIST(29), No. 4, 2019, pp. 399-418.
DOI Link
1911
ANN, GLCM features, image classification,
magnetic resonance imaging (MRI), SVM
BibRef
Man, Y.,
Huang, Y.,
Feng, J.,
Li, X.,
Wu, F.,
Deep Q Learning Driven CT Pancreas Segmentation With Geometry-Aware
U-Net,
MedImg(38), No. 8, August 2019, pp. 1971-1980.
IEEE DOI
1908
Pancreas, Image segmentation, Computed tomography,
Feature extraction, deformable U-net
BibRef
Hussein, S.,
Kandel, P.,
Bolan, C.W.,
Wallace, M.B.,
Bagci, U.,
Lung and Pancreatic Tumor Characterization in the Deep Learning Era:
Novel Supervised and Unsupervised Learning Approaches,
MedImg(38), No. 8, August 2019, pp. 1777-1787.
IEEE DOI
1908
Lung, Unsupervised learning, Tumors, Cancer,
Feature extraction, Deep learning,
pancreatic cancer
BibRef
Zhang, Y.L.[Yu-Ling],
Wang, S.C.[Shu-Chang],
Qu, S.Q.[Shu-Qiang],
Zhang, H.L.[Hong-Li],
Support vector machine combined with magnetic resonance imaging for
accurate diagnosis of paediatric pancreatic cancer,
IET-IPR(14), No. 7, 29 May 2020, pp. 1233-1239.
DOI Link
2005
BibRef
Xie, L.,
Yu, Q.,
Zhou, Y.,
Wang, Y.,
Fishman, E.K.,
Yuille, A.L.,
Recurrent Saliency Transformation Network for Tiny Target
Segmentation in Abdominal CT Scans,
MedImg(39), No. 2, February 2020, pp. 514-525.
IEEE DOI
2002
Pancreas, Image segmentation, Computed tomography,
Biomedical imaging, Training, Neoplasms, Cancer,
saliency transformation
BibRef
Ning, Y.[Yang],
Han, Z.Y.[Zhong-Yi],
Zhong, L.[Li],
Zhang, C.M.[Cai-Ming],
DRAN: Deep recurrent adversarial network for automated pancreas
segmentation,
IET-IPR(14), No. 6, 11 May 2020, pp. 1091-1100.
DOI Link
2005
BibRef
Qiu, J.J.[Jia-Jun],
Yin, J.[Jin],
Qian, W.[Wei],
Liu, J.H.[Jin-Heng],
Huang, Z.X.[Zi-Xing],
Yu, H.P.[Hao-Peng],
Ji, L.[Lin],
Zeng, X.X.[Xiao-Xi],
A Novel Multiresolution-Statistical Texture Analysis Architecture:
Radiomics-Aided Diagnosis of PDAC Based on Plain CT Images,
MedImg(40), No. 1, January 2021, pp. 12-25.
IEEE DOI
2012
Pancreatic Ductal Adenocarcinoma.
Computed tomography, Feature extraction,
Multiresolution analysis, Gray-scale, Computer architecture,
statistical analysis
BibRef
Ahmed, R.,
Ye, J.,
Gerber, S.A.,
Linehan, D.C.,
Doyley, M.M.,
Preclinical Imaging Using Single Track Location Shear Wave
Elastography: Monitoring the Progression of Murine Pancreatic Tumor
Liver Metastasis In Vivo,
MedImg(39), No. 7, July 2020, pp. 2426-2439.
IEEE DOI
2007
Tumors, Mice, Liver, Ultrasonic imaging, Elastography,
Shear wave elastography, preclinical imaging,
respiration gating
BibRef
Chen, X.,
Lin, X.,
Shen, Q.,
Qian, X.,
Combined Spiral Transformation and Model-Driven Multi-Modal Deep
Learning Scheme for Automatic Prediction of TP53 Mutation in
Pancreatic Cancer,
MedImg(40), No. 2, February 2021, pp. 735-747.
IEEE DOI
2102
Cancer, Deep learning, Tumors, Spirals,
Correlation, Feature extraction, Spiral transformation,
pancreatic cancer prediction
BibRef
Zhang, D.W.[Ding-Wen],
Zhang, J.J.[Jia-Jia],
Zhang, Q.[Qiang],
Han, J.G.[Jun-Gong],
Zhang, S.[Shu],
Han, J.W.[Jun-Wei],
Automatic pancreas segmentation based on lightweight DCNN modules and
spatial prior propagation,
PR(114), 2021, pp. 107762.
Elsevier DOI
2103
Pancreas segmentation, Lightweight DCNN, Localization,
Segmentation, Spatial prior
BibRef
Xue, J.,
He, K.,
Nie, D.,
Adeli, E.,
Shi, Z.,
Lee, S.W.,
Zheng, Y.,
Liu, X.,
Li, D.,
Shen, D.,
Cascaded MultiTask 3-D Fully Convolutional Networks for Pancreas
Segmentation,
Cyber(51), No. 4, April 2021, pp. 2153-2165.
IEEE DOI
2103
Pancreas, Image segmentation, Computed tomography, Shape, Skeleton,
Task analysis, Biomedical imaging, Multitask FCN,
skeleton extraction
BibRef
Wang, Y.[Yan],
Tang, P.[Peng],
Zhou, Y.Y.[Yu-Yin],
Shen, W.[Wei],
Fishman, E.K.[Elliot K.],
Yuille, A.L.[Alan L.],
Learning Inductive Attention Guidance for Partially Supervised
Pancreatic Ductal Adenocarcinoma Prediction,
MedImg(40), No. 10, October 2021, pp. 2723-2735.
IEEE DOI
2110
Annotations, Image segmentation, Training data,
Computed tomography, Training, Diseases, Cancer, Attention,
medical image segmentation
BibRef
Zhao, T.Y.[Tian-Yi],
Cao, K.[Kai],
Yao, J.W.[Jia-Wen],
Nogues, I.[Isabella],
Lu, L.[Le],
Huang, L.Y.[Ling-Yun],
Xiao, J.[Jing],
Yin, Z.Z.[Zhao-Zheng],
Zhang, L.[Ling],
3D Graph Anatomy Geometry-Integrated Network for Pancreatic Mass
Segmentation, Diagnosis, and Quantitative Patient Management,
CVPR21(13738-13747)
IEEE DOI
2111
Geometry, Image segmentation,
Computed tomography, Taxonomy, Imaging, Feature extraction
BibRef
Chen, X.[Xiahan],
Chen, Z.[Zihao],
Li, J.[Jun],
Zhang, Y.D.[Yu-Dong],
Lin, X.Z.[Xiao-Zhu],
Qian, X.H.[Xiao-Hua],
Model-Driven Deep Learning Method for Pancreatic Cancer Segmentation
Based on Spiral-Transformation,
MedImg(41), No. 1, January 2022, pp. 75-87.
IEEE DOI
2201
Image segmentation, Cancer, Spirals, Deep learning, Solid modeling,
Tumors, Spiral transformation, model-driven deep learning,
pancreatic cancer segmentation
BibRef
Ju, J.G.[Jian-Guo],
Li, J.M.[Jia-Ming],
Chang, Z.Q.[Zheng-Qi],
Liang, Y.[Ying],
Guan, Z.Y.[Zi-Yu],
Xu, P.F.[Peng-Fei],
Xie, F.[Fei],
Wang, H.[Hexu],
Incorporating multi-stage spatial visual cues and active localization
offset for pancreas segmentation,
PRL(170), 2023, pp. 85-92.
Elsevier DOI
2306
Pancreas segmentation, Coarse-to-fine, Active learning, Spacial context
BibRef
Li, X.Y.[Xin-Yue],
Guo, R.[Rui],
Lu, J.[Jing],
Chen, T.[Tao],
Qian, X.H.[Xiao-Hua],
Causality-Driven Graph Neural Network for Early Diagnosis of
Pancreatic Cancer in Non-Contrast Computerized Tomography,
MedImg(42), No. 6, June 2023, pp. 1656-1667.
IEEE DOI
2306
Feature extraction, Tumors, Computed tomography, Pancreatic cancer,
Medical diagnostic imaging, Graph neural networks,
multiple instance learning
BibRef
Gotta, J.[Jennifer],
Gruenewald, L.D.[Leon D.],
Martin, S.S.[Simon S.],
Booz, C.[Christian],
Eichler, K.[Katrin],
Mahmoudi, S.[Scherwin],
Rezazadeh, C.Ö.[Canan Özdemir],
Reschke, P.[Philipp],
Biciusca, T.[Teodora],
Juergens, L.J.[Lisa-Joy],
Mader, C.[Christoph],
Hammerstingl, R.[Renate],
Sommer, C.M.[Christof M.],
Vogl, T.J.[Thomas J.],
Koch, V.[Vitali],
Unmasking pancreatic cancer: Advanced biomedical imaging for its
detection in native versus arterial dual-energy computed tomography
(DECT) scans,
IJIST(34), No. 2, 2024, pp. e23037.
DOI Link
2402
artificial intelligence, dual-energy computed tomography,
machine learning, pancreatic cancer
BibRef
Lakkshmanan, A.[Ajanthaa],
Ananth, C.A.[C. Anbu],
Tiroumalmouroughane, S.,
CNN Classification of Computed Tomography Images for Pancreatic Tumor
Detection,
IJIG(24), No. 5, September 2024, pp. 2340001.
DOI Link
2410
BibRef
Zhou, B.[Bangyuan],
Xin, G.J.[Guo-Jiang],
Liang, H.[Hao],
Ding, C.S.[Chang-Song],
SEY-Net: Semantic edge Y-shaped network for pancreas segmentation,
IET-IPR(18), No. 13, 2024, pp. 3950-3960.
DOI Link
2411
edge information extraction module, one-stage,
pancreas segmentation, Y-Net
BibRef
Tang, Y.[Yumou],
Zhan, K.[Kun],
Tian, Z.B.[Zhi-Bo],
Zhang, M.X.[Ming-Xuan],
Wang, S.S.[Sai-Sai],
Wen, X.M.[Xue-Ming],
Curriculum Knowledge Switching for Pancreas Segmentation,
ICIP23(985-989)
IEEE DOI Code:
WWW Link.
2312
BibRef
Filho, A.R.G.[Arlindo R. Galvăo],
Wastowski, I.J.[Isabela Jubé],
Moreira, M.A.R.[Marise A. R.],
de P.C.-Cysneiros, M.A.[Maria A.],
Coelho, C.J.[Clarimar José],
Pancreatic Cancer Detection Using Hyperspectral Imaging and Machine
Learning,
ICIP23(2870-2874)
IEEE DOI
2312
BibRef
Li, J.[Ji],
Chen, Y.R.[Yin-Ran],
Chen, R.[Rong],
Shen, D.F.[Dong-Fang],
Luo, X.B.[Xiong-Biao],
3D End-to-End Boundary-Aware Networks for Pancreas Segmentation,
ICIP22(2031-2035)
IEEE DOI
2211
Image segmentation, Solid modeling, Shape, Computed tomography,
Surgery, Pancreas segmentation, deep learning, reverse attention, 3D U-Net
BibRef
Zhu, Z.[Zhuotun],
Lu, Y.Y.[Yong-Yi],
Shen, W.[Wei],
Fishman, E.K.[Elliot K.],
Yuille, A.L.[Alan L.],
Segmentation for Classification of Screening Pancreatic
Neuroendocrine Tumors,
CVAMD21(3395-3401)
IEEE DOI
2112
Sensitivity, Computed tomography,
Ducts, Neural networks, Pancreas
BibRef
Yu, Q.,
Xie, L.,
Wang, Y.,
Zhou, Y.,
Fishman, E.K.,
Yuille, A.L.,
Recurrent Saliency Transformation Network: Incorporating Multi-stage
Visual Cues for Small Organ Segmentation,
CVPR18(8280-8289)
IEEE DOI
1812
Image segmentation, Pancreas, Computed tomography, Training, Testing,
Biomedical imaging
BibRef
Asaturyan, H.[Hykoush],
Villarini, B.[Barbara],
Hierarchical Framework for Automatic Pancreas Segmentation in MRI Using
Continuous Max-Flow and Min-Cuts Approach,
ICIAR18(562-570).
Springer DOI
1807
BibRef
Karasawa, K.[Ken'ichi],
Kitasaka, T.[Takayuki],
Oda, M.[Masahiro],
Nimura, Y.[Yukitaka],
Hayashi, Y.[Yuichiro],
Fujiwara, M.[Michitaka],
Misawa, K.[Kazunari],
Rueckert, D.[Daniel],
Mori, K.[Kensaku],
Structure Specific Atlas Generation and Its Application to Pancreas
Segmentation from Contrasted Abdominal CT Volumes,
MCV15(47-56).
Springer DOI
1608
BibRef
Takagi, M.[Mikio],
Sakaue, K.[Katsuhiko],
The Analysis of Moving Granules in a Pancreatic Cell by
Digital Moving Image Processing,
ICPR78(735-739).
BibRef
7800
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Tomographic Image Generation, CAT, CT, Reconstruction .