Bateni, S.M.,
Huang, C.,
Margulis, S.A.,
Podest, E.,
McDonald, K.,
Feasibility of Characterizing Snowpack and the Freeze-Thaw State
of Underlying Soil Using Multifrequency Active/Passive Microwave Data,
GeoRS(51), No. 7, 2013, pp. 4085-4102.
IEEE DOI Snow; Soil; Active microwave data
1307
BibRef
Podest, E.,
McDonald, K.C.,
Kimball, J.S.,
Multisensor Microwave Sensitivity to Freeze/Thaw Dynamics Across a
Complex Boreal Landscape,
GeoRS(52), No. 11, November 2014, pp. 6818-6828.
IEEE DOI
1407
Backscatter
BibRef
Park, S.E.[Sang-Eun],
Variations of Microwave Scattering Properties by Seasonal Freeze/Thaw
Transition in the Permafrost Active Layer Observed by ALOS PALSAR
Polarimetric Data,
RS(7), No. 12, 2015, pp. 15874.
DOI Link
1601
BibRef
Bateni, S.M.,
Margulis, S.A.,
Podest, E.,
McDonald, K.C.,
Characterizing Snowpack and the Freeze-Thaw State of Underlying Soil
via Assimilation of Multifrequency Passive/Active Microwave Data: A
Case Study (NASA CLPX 2003),
GeoRS(53), No. 1, January 2015, pp. 173-189.
IEEE DOI
1410
data assimilation
BibRef
Jadoon, K.Z.[Khan Zaib],
Weihermüller, L.[Lutz],
McCabe, M.F.[Matthew F.],
Moghadas, D.[Davood],
Vereecken, H.[Harry],
Lambot, S.[Sebastíen],
Temporal Monitoring of the Soil Freeze-Thaw Cycles over a
Snow-Covered Surface by Using Air-Launched Ground-Penetrating Radar,
RS(7), No. 9, 2015, pp. 12041.
DOI Link
1511
BibRef
Han, M.L.[Meng-Lei],
Yang, K.[Kun],
Qin, J.[Jun],
Jin, R.[Rui],
Ma, Y.M.[Yao-Ming],
Wen, J.[Jun],
Chen, Y.Y.[Ying-Ying],
Zhao, L.[Long],
Zhu, L.[La],
Tang, W.J.[Wen-Jun],
An Algorithm Based on the Standard Deviation of Passive Microwave
Brightness Temperatures for Monitoring Soil Surface Freeze/Thaw State
on the Tibetan Plateau,
GeoRS(53), No. 5, May 2015, pp. 2775-2783.
IEEE DOI
1502
hydrological techniques
BibRef
Hu, T.X.[Tong-Xi],
Zhao, T.J.[Tian-Jie],
Shi, J.C.[Jian-Cheng],
Wu, S.L.[Sheng-Li],
Liu, D.[Dan],
Qin, H.M.[Hai-Ming],
Zhao, K.[Kaiguang],
High-Resolution Mapping of Freeze/Thaw Status in China via Fusion of
MODIS and AMSR2 Data,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Roy, A.[Alexandre],
Toose, P.[Peter],
Derksen, C.[Chris],
Rowlandson, T.[Tracy],
Berg, A.[Aaron],
Lemmetyinen, J.[Juha],
Royer, A.[Alain],
Tetlock, E.[Erica],
Helgason, W.[Warren],
Sonnentag, O.[Oliver],
Spatial Variability of L-Band Brightness Temperature during
Freeze/Thaw Events over a Prairie Environment,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link
1711
BibRef
Burgin, M.S.,
Colliander, A.,
Njoku, E.G.,
Chan, S.K.,
Cabot, F.,
Kerr, Y.H.,
Bindlish, R.,
Jackson, T.J.,
Entekhabi, D.,
Yueh, S.H.,
A Comparative Study of the SMAP Passive Soil Moisture Product With
Existing Satellite-Based Soil Moisture Products,
GeoRS(55), No. 5, May 2017, pp. 2959-2971.
IEEE DOI
1705
calibration, moisture, remote sensing, soil, AD 2015 01 31,
AMSR2 mission, ASCAT mission,
Advanced Microwave Scanning Radiometer 2 mission,
Aquarius Advanced Scatterometer mission, Earth fixed grid,
Level 2 radiometer-only soil moisture product,
NASA Soil Moisture Active Passive satellite mission,
SMAP passive soil moisture product, SMOS mission,
Soil Moisture and Ocean Salinity mission,
brightness temperature observations, calibration, global mapping,
satellite based soil moisture products, soil freeze-thaw state,
BibRef
Wu, X.[Xuerui],
Jin, S.G.[Shuang-Gen],
Chang, L.[Liang],
Monitoring Bare Soil Freeze-Thaw Process Using GPS-Interferometric
Reflectometry: Simulation and Validation,
RS(10), No. 1, 2017, pp. xx-yy.
DOI Link
1802
BibRef
Luo, L.H.[Li-Hui],
Ma, W.[Wei],
Zhang, Z.Q.[Zhong-Qiong],
Zhuang, Y.L.[Yan-Li],
Zhang, Y.[Yaonan],
Yang, J.Q.[Jin-Qiang],
Cao, X.C.[Xue-Cheng],
Liang, S.T.[Song-Tao],
Mu, Y.[Yanhu],
Freeze/Thaw-Induced Deformation Monitoring and Assessment of the
Slope in Permafrost Based on Terrestrial Laser Scanner and GNSS,
RS(9), No. 3, 2017, pp. xx-yy.
DOI Link
1704
BibRef
Zheng, D.,
Wang, X.,
van der Velde, R.,
Zeng, Y.,
Wen, J.,
Wang, Z.,
Schwank, M.,
Ferrazzoli, P.,
Su, Z.,
L-Band Microwave Emission of Soil Freeze-Thaw Process in the Third
Pole Environment,
GeoRS(55), No. 9, September 2017, pp. 5324-5338.
IEEE DOI
1709
geochemistry, soil, ELBARA-III radiometer,
L-band microwave emission, Tor Vergata discrete emission model,
climate change, diurnal cycle measure,
seasonally frozen Tibetan grassland site,
soil effective temperature, soil freeze-thaw process,
Soil Moisture and Ocean Salinity (SMOS),
Soil Moisture Active Passive (SMAP),
Tibetan Plateau, Tor Vergata model, soil, freeze/thaw, (F/T)
BibRef
Kraatz, S.[Simon],
Jacobs, J.M.[Jennifer M.],
Schröder, R.[Ronny],
Cho, E.[Eunsang],
Cosh, M.[Michael],
Seyfried, M.[Mark],
Prueger, J.[John],
Livingston, S.[Stan],
Evaluation of SMAP Freeze/Thaw Retrieval Accuracy at Core Validation
Sites in the Contiguous United States,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Kim, Y.[Youngwook],
Kimball, J.S.[John S.],
Xu, X.L.[Xiao-Lan],
Dunbar, R.S.[R. Scott],
Colliander, A.[Andreas],
Derksen, C.[Chris],
Global Assessment of the SMAP Freeze/Thaw Data Record and Regional
Applications for Detecting Spring Onset and Frost Events,
RS(11), No. 11, 2019, pp. xx-yy.
DOI Link
1906
BibRef
Zhang, X.F.[Xue-Fei],
Zhang, H.[Hong],
Wang, C.[Chao],
Tang, Y.X.[Yi-Xian],
Zhang, B.[Bo],
Wu, F.[Fan],
Wang, J.[Jing],
Zhang, Z.J.[Zheng-Jia],
Time-Series InSAR Monitoring of Permafrost Freeze-Thaw Seasonal
Displacement over Qinghai-Tibetan Plateau Using Sentinel-1 Data,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link
1905
BibRef
Yang, C.[Cheng],
Wu, T.H.[Tong-Hua],
Yao, J.[Jimin],
Li, R.[Ren],
Xie, C.W.[Chang-Wei],
Hu, G.J.[Guo-Jie],
Zhu, X.F.[Xiao-Fan],
Zhang, Y.H.[Ying-Hui],
Ni, J.[Jie],
Hao, J.M.[Jun-Ming],
Li, X.F.[Xiang-Fei],
Ma, W.[Wensi],
Wen, A.[Amin],
An Assessment of Using Remote Sensing-based Models to Estimate Ground
Surface Soil Heat Flux on the Tibetan Plateau during the Freeze-thaw
Process,
RS(12), No. 3, 2020, pp. xx-yy.
DOI Link
2002
BibRef
Gao, H.R.[Hui-Ran],
Nie, N.[Ning],
Zhang, W.C.[Wan-Chang],
Chen, H.[Hao],
Monitoring the spatial distribution and changes in permafrost with
passive microwave remote sensing,
PandRS(170), 2020, pp. 142-155.
Elsevier DOI
2011
Permafrost, Surface soil freeze/thaw states,
Passive microwave remote sensing, The frost index, Northeastern China
BibRef
Wu, X.R.[Xue-Rui],
Dong, Z.N.[Zhou-Nan],
Jin, S.G.[Shuang-Gen],
He, Y.[Yang],
Song, Y.Z.[Ye-Zhi],
Ma, W.X.[Wen-Xiao],
Yang, L.[Lei],
First Measurement of Soil Freeze/Thaw Cycles in the Tibetan Plateau
Using CYGNSS GNSS-R Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Han, W.X.[Wei-Xiao],
Huang, C.L.[Chun-Lin],
Duan, H.T.[Hong-Tao],
Gu, J.[Juan],
Hou, J.L.[Jin-Liang],
Lake Phenology of Freeze-Thaw Cycles Using Random Forest:
A Case Study of Qinghai Lake,
RS(12), No. 24, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Chai, M.T.[Ming-Tang],
Li, G.Y.[Guo-Yu],
Ma, W.[Wei],
Cao, Y.P.[Ya-Peng],
Wu, G.[Gang],
Mu, Y.H.[Yan-Hu],
Chen, D.[Dun],
Zhang, J.[Jun],
Zhou, Z.W.[Zhi-Wei],
Zhou, Y.[Yu],
Du, Q.S.[Qing-Song],
Assessment of Freeze-Thaw Hazards and Water Features along the
China-Russia Crude Oil Pipeline in Permafrost Regions,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Holst, C.[Christoph],
Janßen, J.[Jannik],
Schmitz, B.[Berit],
Blome, M.[Martin],
Dercks, M.[Malte],
Schoch-Baumann, A.[Anna],
Blöthe, J.[Jan],
Schrott, L.[Lothar],
Kuhlmann, H.[Heiner],
Medic, T.[Tomislav],
Increasing Spatio-Temporal Resolution for Monitoring Alpine
Solifluction Using Terrestrial Laser Scanners and 3D Vector Fields,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link
2104
TLS.
Monitoring the gradual movements of soil masses due to freeze-thaw activity.
BibRef
Nakata, Y.[Yasutaka],
Hayamizu, M.[Masato],
Ishiyama, N.[Nobuo],
Torita, H.[Hiroyuki],
Observation of Diurnal Ground Surface Changes Due to Freeze-Thaw
Action by Real-Time Kinematic Unmanned Aerial Vehicle,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Lu, Y.F.[Yue-Feng],
Liu, C.[Cong],
Ge, Y.[Yong],
Hu, Y.L.[Yu-Long],
Wen, Q.[Qiao],
Fu, Z.L.[Zhong-Liang],
Wang, S.B.[Shao-Bo],
Liu, Y.[Yong],
Spatiotemporal Characteristics of Freeze-Thawing Erosion in the
Source Regions of the Chin-Sha, Ya-Lung and Lantsang Rivers on the
Basis of GIS,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Wang, B.H.[Bao-Hang],
Zhang, Q.[Qin],
Pepe, A.[Antonio],
Mastro, P.[Pietro],
Zhao, C.Y.[Chao-Ying],
Lu, Z.[Zhong],
Zhu, W.[Wu],
Yang, C.S.[Cheng-Sheng],
Zhang, J.[Jing],
Analysis of Groundwater Depletion/Inflation and Freeze-Thaw Cycles in
the Northern Urumqi Region with the SBAS Technique and an Adjusted
Network of Interferograms,
RS(13), No. 11, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Rouyet, L.[Line],
Liu, L.[Lin],
Strand, S.M.[Sarah Marie],
Christiansen, H.H.[Hanne Hvidtfeldt],
Lauknes, T.R.[Tom Rune],
Larsen, Y.[Yngvar],
Seasonal InSAR Displacements Documenting the Active Layer Freeze and
Thaw Progression in Central-Western Spitsbergen, Svalbard,
RS(13), No. 15, 2021, pp. xx-yy.
DOI Link
2108
BibRef
Wang, J.[Jing],
Wang, C.[Chao],
Zhang, H.[Hong],
Tang, Y.X.[Yi-Xian],
Duan, W.[Wei],
Dong, L.[Longkai],
Freeze-Thaw Deformation Cycles and Temporal-Spatial Distribution of
Permafrost along the Qinghai-Tibet Railway Using Multitrack InSAR
Processing,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Gao, H.R.,
Zhang, Z.J.,
Zhang, W.C.,
Chen, H.,
Xi, M.J.,
Spatial Downscaling Based on Spectrum Analysis for Soil Freeze/Thaw
Status Retrieved From Passive Microwave,
GeoRS(60), 2022, pp. 1-11.
IEEE DOI
2112
Soil, Spatial resolution, Microwave theory and techniques,
Microwave imaging, Surface soil, Spectral analysis,
spectral analysis
BibRef
Han, W.X.[Wei-Xiao],
Huang, C.L.[Chun-Lin],
Gu, J.[Juan],
Hou, J.L.[Jin-Liang],
Zhang, Y.[Ying],
Spatial-Temporal Distribution of the Freeze-Thaw Cycle of the Largest
Lake (Qinghai Lake) in China Based on Machine Learning and MODIS from
2000 to 2020,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link
2105
BibRef
Tenkanen, M.[Maria],
Tsuruta, A.[Aki],
Rautiainen, K.[Kimmo],
Kangasaho, V.[Vilma],
Ellul, R.[Raymond],
Aalto, T.[Tuula],
Utilizing Earth Observations of Soil Freeze/Thaw Data and Atmospheric
Concentrations to Estimate Cold Season Methane Emissions in the
Northern High Latitudes,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, Y.[Yueli],
Wang, L.X.[Ling-Xiao],
Bernier, M.[Monique],
Ludwig, R.[Ralf],
Retrieving Freeze/Thaw Cycles Using Sentinel-1 Data in Eastern
Nunavik (Quebec, Canada),
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Ma, D.Y.[De-Ying],
Motagh, M.[Mahdi],
Liu, G.X.[Guo-Xiang],
Zhang, R.[Rui],
Wang, X.W.[Xiao-Wen],
Zhang, B.[Bo],
Xiang, W.[Wei],
Yu, B.[Bing],
Thaw Settlement Monitoring and Active Layer Thickness Retrieval Using
Time Series COSMO-SkyMed Imagery in Iqaluit Airport,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Huang, L.C.[Ling-Cao],
Lantz, T.C.[Trevor C.],
Fraser, R.H.[Robert H.],
Tiampo, K.F.[Kristy F.],
Willis, M.J.[Michael J.],
Schaefer, K.[Kevin],
Accuracy, Efficiency, and Transferability of a Deep Learning Model
for Mapping Retrogressive Thaw Slumps across the Canadian Arctic,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Wang, J.[Jian],
Jiang, L.[Lingmei],
Rautiainen, K.[Kimmo],
Zhang, C.[Cheng],
Xiao, Z.Q.[Zhi-Qiang],
Li, H.[Heng],
Yang, J.W.[Jian-Wei],
Cui, H.Z.[Hui-Zhen],
Daily High-Resolution Land Surface Freeze/Thaw Detection Using
Sentinel-1 and AMSR2 Data,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Zhou, H.Y.[Hua-Yun],
Zhao, L.[Lin],
Wang, L.X.[Ling-Xiao],
Xing, Z.[Zanpin],
Zou, D.[Defu],
Hu, G.J.[Guo-Jie],
Xie, C.W.[Chang-Wei],
Pang, Q.Q.[Qiang-Qiang],
Liu, G.Y.[Guang-Yue],
Du, E.[Erji],
Liu, S.B.[Shi-Bo],
Qiao, Y.P.[Yong-Ping],
Zhao, J.T.[Jian-Ting],
Li, Z.B.[Zhi-Bin],
Liu, Y.D.[Ya-Dong],
Characteristics of Freeze-Thaw Cycles in an Endorheic Basin on
the Qinghai-Tibet Plateau Based on SBAS-InSAR Technology,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Witharana, C.[Chandi],
Udawalpola, M.R.[Mahendra R.],
Liljedahl, A.K.[Anna K.],
Jones, M.K.W.[Melissa K. Ward],
Jones, B.M.[Benjamin M.],
Hasan, A.[Amit],
Joshi, D.[Durga],
Manos, E.[Elias],
Automated Detection of Retrogressive Thaw Slumps in the High Arctic
Using High-Resolution Satellite Imagery,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Chen, J.[Jie],
Zhang, J.[Jing],
Wu, T.H.[Tong-Hua],
Hao, J.M.[Jun-Ming],
Wu, X.D.[Xiao-Dong],
Ma, X.[Xuyan],
Zhu, X.F.[Xiao-Fan],
Lou, P.Q.[Pei-Qing],
Zhang, L.[Lina],
Activity and Kinematics of Two Adjacent Freeze-Thaw-Related
Landslides Revealed by Multisource Remote Sensing of Qilian Mountain,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Lv, S.N.[Shao-Ning],
Wen, J.[Jun],
Simmer, C.[Clemens],
Zeng, Y.J.[Yi-Jian],
Guo, Y.Y.[Yuan-Yuan],
Su, Z.[Zhongbo],
A Novel Freeze-Thaw State Detection Algorithm Based on L-Band Passive
Microwave Remote Sensing,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Wang, R.J.[Rui-Jie],
Wang, Y.J.[Yan-Jiao],
Yan, F.[Feng],
Vegetation Growth Status and Topographic Effects in Frozen Soil
Regions on the Qinghai-Tibet Plateau,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Wang, X.Q.[Xi-Qiang],
Chen, R.S.[Ren-Sheng],
Han, C.[Chuntan],
Yang, Y.[Yong],
Liu, J.F.[Jun-Feng],
Liu, Z.W.[Zhang-Wen],
Guo, S.H.[Shu-Hai],
Estimation of Soil Freeze Depth in Typical Snowy Regions Using
Reanalysis Dataset: A Case Study in Heilongjiang Province, China,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Fu, C.W.[Chun-Wei],
Hu, Z.Y.[Ze-Yong],
Yang, Y.X.[Yao-Xian],
Deng, M.S.[Ming-Shan],
Yu, H.P.[Hai-Peng],
Lu, S.[Shan],
Wu, D.[Di],
Fan, W.W.[Wei-Wei],
Responses of Soil Freeze-Thaw Processes to Climate on the Tibetan
Plateau from 1980 to 2016,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Ma, S.[Shen],
Zhao, J.Y.[Jing-Yi],
Chen, J.[Ji],
Zhang, S.H.[Shou-Hong],
Dong, T.[Tianchun],
Mei, Q.H.[Qi-Hang],
Hou, X.[Xin],
Liu, G.J.[Guo-Jun],
Ground Surface Freezing and Thawing Index Distribution in the
Qinghai-Tibet Engineering Corridor and Factors Analysis Based on
GeoDetector Technique,
RS(15), No. 1, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Fang, X.W.[Xue-Wei],
Wang, A.[Anqi],
Lyu, S.H.[Shi-Hua],
Fraedrich, K.[Klaus],
Dynamics of Freezing/Thawing Indices and Frozen Ground from 1961 to
2010 on the Qinghai-Tibet Plateau,
RS(15), No. 14, 2023, pp. 3478.
DOI Link
2307
BibRef
Wang, S.[Shuo],
Sheng, Y.[Yu],
Ran, Y.[Youhua],
Wang, B.Q.[Bing-Quan],
Cao, W.[Wei],
Peng, E.[Erxing],
Peng, C.Y.[Chen-Yang],
Predict Seasonal Maximum Freezing Depth Changes Using Machine
Learning in China over the Last 50 Years,
RS(15), No. 15, 2023, pp. xx-yy.
DOI Link
2308
BibRef
Taghipourjavi, S.[Shahabeddin],
Kinnard, C.[Christophe],
Roy, A.[Alexandre],
Sentinel-1-Based Soil Freeze-Thaw Detection in Agro-Forested Areas:
A Case Study in Southern Qu©bec, Canada,
RS(16), No. 7, 2024, pp. 1294.
DOI Link
2404
BibRef
Yang, Z.Z.[Zhen-Zhen],
Ni, W.[Wankui],
Niu, F.[Fujun],
Li, L.[Lan],
Ren, S.Y.[Si-Yuan],
Spatiotemporal Distribution Characteristics and Influencing Factors
of Freeze-Thaw Erosion in the Qinghai-Tibet Plateau,
RS(16), No. 9, 2024, pp. 1629.
DOI Link
2405
BibRef
Liang, H.S.[Hai-Shan],
Wu, X.R.[Xue-Rui],
Reviewing Space-Borne GNSS-Reflectometry for Detecting Freeze/Thaw
Conditions of Near-Surface Soils,
RS(16), No. 11, 2024, pp. 1828.
DOI Link
2406
BibRef
Liu, X.Y.[Xing-Yun],
Peng, X.Q.[Xiao-Qing],
Zhang, Y.[Yongyan],
Frauenfeld, O.W.[Oliver W.],
Wei, G.[Gang],
Chen, G.Q.[Guan-Qun],
Huang, Y.[Yuan],
Mu, C.C.[Cui-Cui],
Du, J.[Jun],
Observed Retrogressive Thaw Slump Evolution in the Qilian Mountains,
RS(16), No. 13, 2024, pp. 2490.
DOI Link
2407
BibRef
Rodenhizer, H.[Heidi],
Yang, Y.[Yili],
Fiske, G.[Greg],
Potter, S.[Stefano],
Windholz, T.[Tiffany],
Mullen, A.[Andrew],
Watts, J.D.[Jennifer D.],
Rogers, B.M.[Brendan M.],
A Comparison of Satellite Imagery Sources for Automated Detection of
Retrogressive Thaw Slumps,
RS(16), No. 13, 2024, pp. 2361.
DOI Link
2407
BibRef
Moradi, M.[Mahsa],
Kraatz, S.[Simon],
Johnston, J.[Jeremy],
Jacobs, J.M.[Jennifer M.],
Comparing Three Freeze-Thaw Schemes Using C-Band Radar Data in
Southeastern New Hampshire, USA,
RS(16), No. 15, 2024, pp. 2784.
DOI Link
2408
BibRef
Xue, Z.L.[Ze-Long],
Zhao, S.M.[Shang-Min],
Zhang, B.[Bin],
Study on Soil Freeze-Thaw and Surface Deformation Patterns in the
Qilian Mountains Alpine Permafrost Region Using SBAS-InSAR Technique,
RS(16), No. 23, 2024, pp. 4595.
DOI Link
2501
BibRef
Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Terrain Analysis of Mars, Craters, Minerals .