Song, G.,
Tang, S.Q.,
Method for Spectral Pattern-Recognition of Color Camouflage,
OptEng(36), No. 6, June 1997, pp. 1779-1781.
9706
BibRef
Camapum Wanderley, J.F.[Juliana F.],
Fisher, M.H.[Mark H.],
Spatial-Feature Parametric Clustering Applied to Motion-Based
Segmentation in Camouflage,
CVIU(85), No. 2, February 2002, pp. 144-157.
DOI Link
0210
BibRef
Earlier:
Segmentation using spatial-feature clustering from image sequences,
ICIP98(III: 799-803).
IEEE DOI
9810
See also Multiscale color invariants based on the human visual system.
BibRef
Hou, D.D.[Dong-Dong],
Zhang, W.M.[Wei-Ming],
Yu, N.H.[Neng-Hai],
Image camouflage by reversible image transformation,
JVCIR(40, Part A), No. 1, 2016, pp. 225-236.
Elsevier DOI
1609
Image camouflage
BibRef
Zhang, X.,
Zhu, C.,
Wang, S.,
Liu, Y.,
Ye, M.,
A Bayesian Approach to Camouflaged Moving Object Detection,
CirSysVideo(27), No. 9, September 2017, pp. 2001-2013.
IEEE DOI
1709
Adaptation models, Bayes methods, Computational modeling,
Feature extraction, Hidden Markov models,
Background subtraction, camouflage problem,
BibRef
Mondal, A.[Ajoy],
Ghosh, S.[Susmita],
Ghosh, A.[Ashish],
Partially Camouflaged Object Tracking using Modified Probabilistic
Neural Network and Fuzzy Energy based Active Contour,
IJCV(122), No. 1, March 2017, pp. 116-148.
Springer DOI
1702
BibRef
Li, S.,
Florencio, D.,
Li, W.,
Zhao, Y.,
Cook, C.,
A Fusion Framework for Camouflaged Moving Foreground Detection in the
Wavelet Domain,
IP(27), No. 8, August 2018, pp. 3918-3930.
IEEE DOI
1806
BibRef
Earlier: A1, A2, A4, A5, A3:
Foreground detection in camouflaged scenes,
ICIP17(4247-4251)
IEEE DOI
1803
image fusion, image segmentation, image sequences,
object detection, wavelet transforms, background models,
wavelet transform.
Correlation, Frequency-domain analysis, Image color analysis,
Wavelet domain, Foreground detection,
BibRef
Hou, D.D.[Dong-Dong],
Qin, C.[Chuan],
Yu, N.H.[Neng-Hai],
Zhang, W.M.[Wei-Ming],
Reversible visual transformation via exploring the correlations
within color images,
JVCIR(53), 2018, pp. 134-145.
Elsevier DOI
1805
Reversible visual transformation, Image camouflage,
Image encryption, Reversible data hiding
BibRef
Zheng, Y.,
Zhang, X.,
Wang, F.,
Cao, T.,
Sun, M.,
Wang, X.,
Detection of People With Camouflage Pattern Via Dense Deconvolution
Network,
SPLetters(26), No. 1, January 2019, pp. 29-33.
IEEE DOI
1901
deconvolution, feature extraction, feedforward neural nets,
image segmentation, natural scenes, object detection,
spatial smoothness
BibRef
Le, T.N.[Trung-Nghia],
Nguyen, T.V.[Tam V.],
Nie, Z.L.[Zhong-Liang],
Tran, M.T.[Minh-Triet],
Sugimoto, A.[Akihiro],
Anabranch network for camouflaged object segmentation,
CVIU(184), 2019, pp. 45-56.
Elsevier DOI
1906
Camouflaged object segmentation, Anabranch network
BibRef
Escudero-Vińolo, M.[Marcos],
Bescos, J.[Jesus],
Squeezing the DCT to Fight Camouflage,
JMIV(62), No. 2, February 2020, pp. 206-222.
Springer DOI
2002
BibRef
Mondal, A.[Ajoy],
Camouflaged Object Detection and Tracking: A Survey,
IJIG(20), No. 4, October 2020, pp. 2050028.
DOI Link
2011
BibRef
Xu, X.Q.[Xiu-Qi],
Zhu, M.Y.[Ming-Yu],
Yu, J.H.[Jin-Hao],
Chen, S.H.[Shu-Han],
Hu, X.L.[Xue-Long],
Yang, Y.Q.[Yue-Quan],
Boundary guidance network for camouflage object detection,
IVC(114), 2021, pp. 104283.
Elsevier DOI
2109
Camouflaged object detection, Boundary guidance,
Hierarchical-Split Convolution, Residual refinement
BibRef
Shen, Y.[Ying],
Li, J.[Jie],
Lin, W.[Wenfu],
Chen, L.Q.[Li-Qiong],
Huang, F.[Feng],
Wang, S.[Shu],
Camouflaged Target Detection Based on Snapshot Multispectral Imaging,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Ji, G.P.[Ge-Peng],
Zhu, L.[Lei],
Zhuge, M.[Mingchen],
Fu, K.[Keren],
Fast Camouflaged Object Detection via Edge-based Reversible
Re-calibration Network,
PR(123), 2022, pp. 108414.
Elsevier DOI
2112
Camouflaged Object Detection, Reversible Re-calibration Unit,
Selective Edge Aggregation, NGES Priors
BibRef
Le, T.N.[Trung-Nghia],
Cao, Y.[Yubo],
Nguyen, T.C.[Tan-Cong],
Le, M.Q.[Minh-Quan],
Nguyen, K.D.[Khanh-Duy],
Do, T.T.[Thanh-Toan],
Tran, M.T.[Minh-Triet],
Nguyen, T.V.[Tam V.],
Camouflaged Instance Segmentation In-the-Wild:
Dataset, Method, and Benchmark Suite,
IP(31), 2022, pp. 287-300.
IEEE DOI
2112
Image segmentation, Task analysis, Benchmark testing,
Object segmentation, Image color analysis, Urban areas, Semantics,
multimodal learning
BibRef
Zhuge, M.C.[Ming-Chen],
Lu, X.K.[Xian-Kai],
Guo, Y.[Yiyou],
Cai, Z.H.[Zhi-Hua],
Chen, S.H.[Shu-Han],
CubeNet: X-shape connection for camouflaged object detection,
PR(127), 2022, pp. 108644.
Elsevier DOI
2205
Camouflaged object detection, Neural network, Edge guidance,
Novel feature aggregation
BibRef
Liu, Q.[Qiang],
Xiang, X.[Xuyu],
Qin, J.[Jiaohua],
Tan, Y.[Yun],
Zhang, Q.[Qin],
A Robust Coverless Steganography Scheme Using Camouflage Image,
CirSysVideo(32), No. 6, June 2022, pp. 4038-4051.
IEEE DOI
2206
Robustness, Convolutional neural networks, Receivers, Forestry,
Computer science, Information technology, Elbow,
image retrieval
BibRef
Zhang, C.[Cong],
Wang, K.[Kang],
Bi, H.B.[Hong-Bo],
Liu, Z.Q.[Zi-Qi],
Yang, L.[Lina],
Camouflaged object detection via Neighbor Connection and Hierarchical
Information Transfer,
CVIU(221), 2022, pp. 103450.
Elsevier DOI
2206
Deep learning, Camouflaged Object Detection, Salient Object Detection
BibRef
Hupel, T.[Tobias],
Stütz, P.[Peter],
Adopting Hyperspectral Anomaly Detection for Near Real-Time
Camouflage Detection in Multispectral Imagery,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Bi, H.B.[Hong-Bo],
Zhang, C.[Cong],
Wang, K.[Kang],
Tong, J.H.[Jing-Hui],
Zheng, F.[Feng],
Rethinking Camouflaged Object Detection: Models and Datasets,
CirSysVideo(32), No. 9, September 2022, pp. 5708-5724.
IEEE DOI
2209
Object detection, Feature extraction, Visualization,
Image color analysis, Task analysis, Optical imaging,
deep learning
BibRef
Chen, G.[Geng],
Liu, S.J.[Si-Jie],
Sun, Y.J.[Yu-Jia],
Ji, G.P.[Ge-Peng],
Wu, Y.F.[Ya-Feng],
Zhou, T.[Tao],
Camouflaged Object Detection via Context-Aware Cross-Level Fusion,
CirSysVideo(32), No. 10, October 2022, pp. 6981-6993.
IEEE DOI
2210
Deep learning, Object detection, Computational modeling,
Image segmentation, Task analysis, Object recognition,
polyp segmentation
BibRef
Li, P.[Peng],
Yan, X.F.[Xue-Feng],
Zhu, H.W.[Hong-Wei],
Wei, M.Q.[Ming-Qiang],
Zhang, X.P.[Xiao-Ping],
Qin, J.[Jing],
FindNet: Can You Find Me? Boundary-and-Texture Enhancement Network
for Camouflaged Object Detection,
IP(31), 2022, pp. 6396-6411.
IEEE DOI
2211
Codes, Convolution, Shape, Image color analysis, Fuses,
Image edge detection, Semantics, FindNet,
texture enhancement module
BibRef
Zhou, T.[Tao],
Zhou, Y.[Yi],
Gong, C.[Chen],
Yang, J.[Jian],
Zhang, Y.[Yu],
Feature Aggregation and Propagation Network for Camouflaged Object
Detection,
IP(31), 2022, pp. 7036-7047.
IEEE DOI
2212
Feature extraction, Decoding, Logic gates, Object detection,
Task analysis, Fuses, Image color analysis, feature propagation
BibRef
Ren, J.J.[Jing-Jing],
Hu, X.W.[Xiao-Wei],
Zhu, L.[Lei],
Xu, X.[Xuemiao],
Xu, Y.Y.[Yang-Yang],
Wang, W.M.[Wei-Ming],
Deng, Z.J.[Zi-Jun],
Heng, P.A.[Pheng-Ann],
Deep Texture-Aware Features for Camouflaged Object Detection,
CirSysVideo(33), No. 3, March 2023, pp. 1157-1167.
IEEE DOI
2303
Feature extraction, Object detection, Convolution,
Covariance matrices, Semantics, Deep learning, Data mining,
texture-aware
BibRef
Deng, B.Y.[Bin-Yue],
Zhang, D.H.[Deng-Hui],
Dong, F.[Fashan],
Zhang, J.J.[Jun-Jian],
Shafiq, M.[Muhammad],
Gu, Z.Q.[Zhao-Quan],
Rust-Style Patch: A Physical and Naturalistic Camouflage Attacks on
Object Detector for Remote Sensing Images,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Zhai, Q.[Qiang],
Li, X.[Xin],
Yang, F.[Fan],
Jiao, Z.C.[Zhi-Cheng],
Luo, P.[Ping],
Cheng, H.[Hong],
Liu, Z.C.[Zi-Cheng],
MGL: Mutual Graph Learning for Camouflaged Object Detection,
IP(32), 2023, pp. 1897-1910.
IEEE DOI
2303
Object detection, Task analysis, Image edge detection,
Feature extraction, Cognition, Semantics, Representation learning,
camouflaged object detection
BibRef
Zhai, Q.[Qiang],
Li, X.[Xin],
Yang, F.[Fan],
Chen, C.Z.[Chengli-Zhao],
Cheng, H.[Hong],
Fan, D.P.[Deng-Ping],
Mutual Graph Learning for Camouflaged Object Detection,
CVPR21(12992-13002)
IEEE DOI
2111
Codes, Image edge detection, Object detection,
Feature extraction, Cognition, Data mining
BibRef
Zhang, Y.[Yichi],
Zhu, Z.J.[Zi-Jian],
Su, H.[Hang],
Zhu, J.[Jun],
Zheng, S.[Shibao],
He, Y.[Yuan],
Xue, H.[Hui],
To make yourself invisible with Adversarial Semantic Contours,
CVIU(230), 2023, pp. 103659.
Elsevier DOI
2303
Adversarial examples, Sparse attacks, Object detection, Detection transformer
BibRef
Liu, Y.[Yan],
Zhang, K.[Kaihua],
Zhao, Y.[Yaqian],
Chen, H.[Hu],
Liu, Q.S.[Qing-Shan],
Bi-RRNet: Bi-level recurrent refinement network for camouflaged
object detection,
PR(139), 2023, pp. 109514.
Elsevier DOI
2304
Camouflaged object detection, Convolutional neural networks,
Recurrent refinement network, Dense prediction
BibRef
Song, Z.[Ze],
Kang, X.D.[Xu-Dong],
Wei, X.H.[Xiao-Hui],
Liu, H.B.[Hai-Bo],
Dian, R.[Renwei],
Li, S.T.[Shu-Tao],
FSNet: Focus Scanning Network for Camouflaged Object Detection,
IP(32), 2023, pp. 2267-2278.
IEEE DOI
2305
Transformers, Task analysis, Object detection,
Image color analysis, Charge coupled devices,
swin transformer
BibRef
Jiang, S.[Shiyao],
Li, X.Y.[Xin-Yue],
Yang, M.[Miao],
Qi, L.[Lin],
Edge-Aware Fusion for Camouflaged Object Detection,
ICIVC22(263-268)
IEEE DOI
2301
Deep learning, Fuses, Image color analysis, Image edge detection,
Computational modeling, Semantics, Neural networks, Deep Learning
BibRef
Li, X.Y.[Xin-Yue],
Li, L.[Lin],
Jiang, S.[Shiyao],
Yang, M.[Miao],
Qi, L.[Lin],
Camouflaged Object Detection with Discriminative Information
Attention and Cross-level Feature Fusion,
ICIVC22(248-255)
IEEE DOI
2301
Image segmentation, Computational modeling, Redundancy, Object detection,
Feature extraction, Data mining, Task analysis, deep learning
BibRef
Liu, Z.Y.[Zheng-Yi],
Zhang, Z.[Zhili],
Tan, Y.C.[Ya-Cheng],
Wu, W.[Wei],
Boosting Camouflaged Object Detection with Dual-Task Interactive
Transformer,
ICPR22(140-146)
IEEE DOI
2212
Costs, Computational modeling, Machine vision, Object detection,
Transformers, Feature extraction, Search problems, multi-task learning
BibRef
He, C.Y.[Chi-Yuan],
Xu, L.F.[Lin-Feng],
Qiu, Z.H.[Zi-Huan],
Eldnet: Establishment and Refinement of Edge Likelihood Distributions
for Camouflaged Object Detection,
ICIP22(621-625)
IEEE DOI
2211
Fault tolerance, Image edge detection, Semantics,
Fault tolerant systems, Estimation, Object detection, Interference,
Deep learning
BibRef
Pei, J.L.[Jia-Lun],
Cheng, T.Y.[Tian-Yang],
Fan, D.P.[Deng-Ping],
Tang, H.[He],
Chen, C.B.[Chuan-Bo],
Van Gool, L.J.[Luc J.],
OSFormer: One-Stage Camouflaged Instance Segmentation with Transformers,
ECCV22(XVIII:19-37).
Springer DOI
2211
BibRef
Zhong, Y.J.[Yi-Jie],
Li, B.[Bo],
Tang, L.[Lv],
Kuang, S.[Senyun],
Wu, S.[Shuang],
Ding, S.H.[Shou-Hong],
Detecting Camouflaged Object in Frequency Domain,
CVPR22(4494-4503)
IEEE DOI
2210
Visualization, Shape, Fuses, Frequency-domain analysis,
Object detection, Pattern recognition, Segmentation,
Scene analysis and understanding
BibRef
Jia, Q.[Qi],
Yao, S.L.[Shui-Lian],
Liu, Y.[Yu],
Fan, X.[Xin],
Liu, R.S.[Ri-Sheng],
Luo, Z.X.[Zhong-Xuan],
Segment, Magnify and Reiterate: Detecting Camouflaged Objects the
Hard Way,
CVPR22(4703-4712)
IEEE DOI
2210
Measurement, Image segmentation, Codes, Image edge detection,
Object detection, Network architecture, Recognition: detection,
grouping and shape analysis
BibRef
Gao, R.J.[Rui-Jun],
Guo, Q.[Qing],
Juefei-Xu, F.[Felix],
Yu, H.K.[Hong-Kai],
Fu, H.Z.[Hua-Zhu],
Feng, W.[Wei],
Liu, Y.[Yang],
Wang, S.[Song],
Can You Spot the Chameleon? Adversarially Camouflaging Images from
Co-Salient Object Detection,
CVPR22(2140-2149)
IEEE DOI
2210
Degradation, Additives, Perturbation methods, Pipelines,
Object detection, Robustness, Safety, Low-level vision,
Adversarial attack and defense
BibRef
Pang, Y.[Youwei],
Zhao, X.Q.[Xiao-Qi],
Xiang, T.Z.[Tian-Zhu],
Zhang, L.[Lihe],
Lu, H.C.[Hu-Chuan],
Zoom In and Out:
A Mixed-scale Triplet Network for Camouflaged Object Detection,
CVPR22(2150-2160)
IEEE DOI
2210
Uncertainty, Shape, Semantics, Merging, MIMICs, Object detection,
Predictive models, Low-level vision, Segmentation, grouping and shape analysis
BibRef
Cheng, X.L.[Xue-Lian],
Xiong, H.[Huan],
Fan, D.P.[Deng-Ping],
Zhong, Y.[Yiran],
Harandi, M.[Mehrtash],
Drummond, T.[Tom],
Ge, Z.Y.[Zong-Yuan],
Implicit Motion Handling for Video Camouflaged Object Detection,
CVPR22(13854-13863)
IEEE DOI
2210
Motion segmentation, Motion estimation, Video sequences, Wildlife,
Object detection, Benchmark testing, Transformers,
grouping and shape analysis
BibRef
Yang, F.[Fan],
Zhai, Q.[Qiang],
Li, X.[Xin],
Huang, R.[Rui],
Luo, A.[Ao],
Cheng, H.[Hong],
Fan, D.P.[Deng-Ping],
Uncertainty-Guided Transformer Reasoning for Camouflaged Object
Detection,
ICCV21(4126-4135)
IEEE DOI
2203
Uncertainty, Object detection, Transformer cores, Transformers,
Probabilistic logic, Cognition,
grouping and shape
BibRef
Wang, J.[Jiakai],
Liu, A.[Aishan],
Yin, Z.[Zixin],
Liu, S.[Shunchang],
Tang, S.Y.[Shi-Yu],
Liu, X.L.[Xiang-Long],
Dual Attention Suppression Attack: Generate Adversarial Camouflage in
Physical World,
CVPR21(8561-8570)
IEEE DOI
2111
Deep learning, Visualization, Shape, Perturbation methods, Semantics,
Three-dimensional printing, Robustness
BibRef
Mei, H.Y.[Hai-Yang],
Ji, G.P.[Ge-Peng],
Wei, Z.[Ziqi],
Yang, X.[Xin],
Wei, X.P.[Xiao-Peng],
Fan, D.P.[Deng-Ping],
Camouflaged Object Segmentation with Distraction Mining,
CVPR21(8768-8777)
IEEE DOI
2111
Measurement, Frequency modulation, MIMICs, Refining,
Object segmentation, Real-time systems, Pattern recognition
BibRef
Liu, J.W.[Jia-Wei],
Zhang, J.[Jing],
Barnes, N.[Nick],
Modeling Aleatoric Uncertainty for Camouflaged Object Detection,
WACV22(2613-2622)
IEEE DOI
2202
Training, Uncertainty, Annotations, Estimation, Object detection,
Predictive models, Probability distribution, Segmentation, Grouping and Shape
BibRef
Li, A.X.[Ai-Xuan],
Zhang, J.[Jing],
Lv, Y.Q.[Yun-Qiu],
Liu, B.W.[Bo-Wen],
Zhang, T.[Tong],
Dai, Y.C.[Yu-Chao],
Uncertainty-aware Joint Salient Object and Camouflaged Object
Detection,
CVPR21(10066-10076)
IEEE DOI
2111
Visualization, Uncertainty, Computational modeling,
Object detection, Benchmark testing, Predictive models,
Adversarial machine learning
BibRef
Hu, S.N.[Sheng-Nan],
Zhang, Y.[Yang],
Laha, S.[Sumit],
Sharma, A.[Ankit],
Foroosh, H.[Hassan],
CCA: Exploring the Possibility of Contextual Camouflage Attack on
Object Detection,
ICPR21(7647-7654)
IEEE DOI
2105
Training, Adaptation models, Machine learning algorithms,
Neural networks, Lighting, Detectors, Object detection
BibRef
Lv, Y.Q.[Yun-Qiu],
Zhang, J.[Jing],
Dai, Y.C.[Yu-Chao],
Li, A.[Aixuan],
Liu, B.[Bowen],
Barnes, N.[Nick],
Fan, D.P.[Deng-Ping],
Simultaneously Localize, Segment and Rank the Camouflaged Objects,
CVPR21(11586-11596)
IEEE DOI
2111
Location awareness, Animals,
Computational modeling, Object detection, Color, Task analysis
BibRef
Huang, L.,
Gao, C.,
Zhou, Y.,
Xie, C.,
Yuille, A.L.,
Zou, C.,
Liu, N.,
Universal Physical Camouflage Attacks on Object Detectors,
CVPR20(717-726)
IEEE DOI
2008
Proposals, Detectors, Semantics, Perturbation methods, Strain,
Optimization
BibRef
Duan, R.,
Ma, X.,
Wang, Y.,
Bailey, J.,
Qin, A.K.,
Yang, Y.,
Adversarial Camouflage: Hiding Physical-World Attacks With Natural
Styles,
CVPR20(997-1005)
IEEE DOI
2008
Perturbation methods, Cameras, Robustness, Feature extraction,
Distortion, Visualization, Measurement
BibRef
Fan, D.,
Ji, G.,
Sun, G.,
Cheng, M.,
Shen, J.,
Shao, L.,
Camouflaged Object Detection,
CVPR20(2774-2784)
IEEE DOI
2008
Task analysis, Object detection, Image segmentation, Measurement, Cats
BibRef
Lamdouar, H.[Hala],
Yang, C.[Charig],
Xie, W.[Weidi],
Zisserman, A.[Andrew],
Betrayed by Motion: Camouflaged Object Discovery via Motion
Segmentation,
ACCV20(II:488-503).
Springer DOI
WWW Link.
2103
See also MoCA: Moving Camouflaged Animals dataset.
BibRef
Miao, C.[Chu],
Shaohui, T.[Tian],
An extraction method for digital camouflage texture based on human
visual perception and isoperimetric theory,
ICIVC17(158-162)
IEEE DOI
1708
Feature extraction, Image color analysis, Image edge detection,
Image segmentation, Sensitivity, Visual perception, Visualization,
digital camouflage, human visual perception,
isoperimetric theory, multilevel, threshold
BibRef
Owens, A.[Andrew],
Barnes, C.[Connelly],
Flint, A.[Alex],
Singh, H.[Hanumant],
Freeman, W.T.[William T.],
Camouflaging an Object from Many Viewpoints,
CVPR14(2782-2789)
IEEE DOI
1409
produce a surface texture that will make the object
difficult for a human to detect.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Object Localization .