Xu, Z.,
Tao, D.,
Huang, S.,
Zhang, Y.,
Friend or Foe: Fine-Grained Categorization With Weak Supervision,
IP(26), No. 1, January 2017, pp. 135-146.
IEEE DOI
1612
BibRef
Earlier: A3, A1, A3, A4:
Part-Stacked CNN for Fine-Grained Visual Categorization,
CVPR16(1173-1182)
IEEE DOI
1612
BibRef
Earlier: A1, A3, A4, A2:
Augmenting Strong Supervision Using Web Data for Fine-Grained
Categorization,
ICCV15(2524-2532)
IEEE DOI
1602
learning (artificial intelligence).
Computer architecture
BibRef
Xu, Z.,
Huang, S.,
Zhang, Y.,
Tao, D.,
Webly-Supervised Fine-Grained Visual Categorization via Deep Domain
Adaptation,
PAMI(40), No. 5, May 2018, pp. 1100-1113.
IEEE DOI
1804
Algorithm design and analysis, Flickr, Knowledge engineering,
Object recognition, Training, Training data, Visualization,
webly-supervised learning
BibRef
Xie, G.S.[Guo-Sen],
Zhang, X.Y.[Xu-Yao],
Yang, W.H.[Wen-Han],
Xu, M.L.[Ming-Liang],
Yan, S.C.[Shui-Cheng],
Liu, C.L.[Cheng-Lin],
LG-CNN: From local parts to global discrimination for fine-grained
recognition,
PR(71), No. 1, 2017, pp. 118-131.
Elsevier DOI
1707
Fine-grained, recognition
BibRef
Sun, T.[Ting],
Sun, L.[Lin],
Yeung, D.Y.[Dit-Yan],
Fine-grained categorization via CNN-based automatic extraction and
integration of object-level and part-level features,
IVC(64), No. 1, 2017, pp. 47-66.
Elsevier DOI
1708
Fine-grained categorization
BibRef
Lin, T.Y.,
Roy Chowdhury, A.,
Maji, S.,
Bilinear Convolutional Neural Networks for Fine-Grained Visual
Recognition,
PAMI(40), No. 6, June 2018, pp. 1309-1322.
IEEE DOI
1805
BibRef
Earlier:
Bilinear CNN Models for Fine-Grained Visual Recognition,
ICCV15(1449-1457)
IEEE DOI
1602
Birds, Computer architecture, Convolutional codes,
Feature extraction, Image recognition, Neural networks,
texture representations
Atmospheric modeling
BibRef
Yao, H.,
Zhang, S.,
Zhang, Y.,
Li, J.,
Tian, Q.,
Coarse-to-Fine Description for Fine-Grained Visual Categorization,
IP(25), No. 10, October 2016, pp. 4858-4872.
IEEE DOI
1610
image classification
BibRef
Yao, H.T.[Han-Tao],
Zhang, S.L.[Shi-Liang],
Yan, C.G.[Cheng-Gang],
Zhang, Y.D.[Yong-Dong],
Li, J.T.[Jin-Tao],
Tian, Q.[Qi],
AutoBD: Automated Bi-Level Description for Scalable Fine-Grained
Visual Categorization,
IP(27), No. 1, January 2018, pp. 10-23.
IEEE DOI
1712
feature extraction, image classification, image representation,
image segmentation, Automated Bi-Level Description,
convolutional neural network
BibRef
Li, L.Y.[Ling-Yun],
Guo, Y.Q.[Yan-Qing],
Xie, L.X.[Ling-Xi],
Kong, X.W.[Xiang-Wei],
Tian, Q.[Qi],
Fine-grained visual categorization with fine-tuned segmentation,
ICIP15(2025-2029)
IEEE DOI
1512
Fine-Grained Visual Categorization
BibRef
Wei, X.S.,
Luo, J.H.,
Wu, J.,
Zhou, Z.H.,
Selective Convolutional Descriptor Aggregation for Fine-Grained Image
Retrieval,
IP(26), No. 6, June 2017, pp. 2868-2881.
IEEE DOI
1705
feature extraction, image retrieval,
neural nets, SCDA feature visualization, SCDA method,
deep convolutional neural network model,
fine-grained image retrieval, imageNet classification,
selective convolutional descriptor aggregation,
state-of-the-art general image retrieval approach,
unsupervised retrieval task, visual attribute, Automobiles, Birds,
Buildings, Convolution, Image retrieval, Machine learning,
Fine-grained image retrieval, selection and aggregation,
unsupervised object localization
BibRef
Liu, L.Q.[Ling-Qiao],
Shen, C.H.[Chun-Hua],
van den Hengel, A.[Anton],
Cross-Convolutional-Layer Pooling for Image Recognition,
PAMI(39), No. 11, November 2017, pp. 2305-2313.
IEEE DOI
1710
Computational efficiency, Feature extraction, Image recognition,
Image representation, Image retrieval, Neural networks,
Visualization, Convolutional networks, deep learning,
fine-grained object recognition,
BibRef
Cai, D.D.[Ding-Ding],
Chen, K.[Ke],
Qian, Y.L.[Yan-Lin],
Kämäräinen, J.K.[Joni-Kristian],
Convolutional low-resolution fine-grained classification,
PRL(119), 2019, pp. 166-171.
Elsevier DOI
1902
Fine-grained image classification,
Super resolution convoluational neural networks, Deep learning
BibRef
Wang, Y.F.[Ya-Fei],
Wang, Z.P.[Ze-Peng],
A survey of recent work on fine-grained image classification
techniques,
JVCIR(59), 2019, pp. 210-214.
Elsevier DOI
1903
Image classification, Deep learning, Convolutional neural networks
BibRef
Wang, Y.H.[Yan-Hai],
Li, Q.Q.[Qing-Quan],
Chen, B.[Bo],
Image classification towards transmission line fault detection via
learning deep quality-aware fine-grained categorization,
JVCIR(64), 2019, pp. 102647.
Elsevier DOI
1911
Fine-grained categorization, Fault recognition, Quality model,
Fast R-CNN, SVM
BibRef
Wang, J.[Jiang],
Song, Y.[Yang],
Leung, T.[Thomas],
Rosenberg, C.[Chuck],
Wang, J.B.[Jing-Bin],
Philbin, J.[James],
Chen, B.[Bo],
Wu, Y.[Ying],
Learning Fine-Grained Image Similarity with Deep Ranking,
CVPR14(1386-1393)
IEEE DOI
1409
BibRef
Zeng, X.X.[Xian-Xian],
Zhang, Y.[Yun],
Wang, X.D.[Xiao-Dong],
Chen, K.R.[Kai-Rui],
Li, D.[Dong],
Yang, W.J.[Wei-Jun],
Fine-Grained Image Retrieval via Piecewise Cross Entropy loss,
IVC(93), 2020, pp. 103820.
Elsevier DOI
2001
Fine-Grained Image Retrieval, CNN, Piecewise cross entropy loss
BibRef
Ding, Y.,
Ma, Z.,
Wen, S.,
Xie, J.,
Chang, D.,
Si, Z.,
Wu, M.,
Ling, H.,
AP-CNN: Weakly Supervised Attention Pyramid Convolutional Neural
Network for Fine-Grained Visual Classification,
IP(30), 2021, pp. 2826-2836.
IEEE DOI
2102
Task analysis, Feature extraction, Visualization, Annotations,
Semantics, Proposals, Birds, Fine-grained visual classification,
deep learning
BibRef
Chen, J.M.[Jia-Min],
Hu, J.G.[Jian-Guo],
Li, S.R.[Shi-Ren],
Learning to locate for fine-grained image recognition,
CVIU(206), 2021, pp. 103184.
Elsevier DOI
2104
Background suppression, CNN, Feature extraction,
Fine-grained image recognition, Salient point detection, Weakly supervised
BibRef
Wu, L.[Lin],
Wang, Y.[Yang],
Li, X.[Xue],
Gao, J.B.[Jun-Bin],
Deep Attention-Based Spatially Recursive Networks for Fine-Grained
Visual Recognition,
Cyber(49), No. 5, May 2019, pp. 1791-1802.
IEEE DOI
1903
Feature extraction, Visualization, Task analysis, Detectors, Birds,
Encoding, Computational modeling, Bilinear pooling,
visual attention
BibRef
Qi, L.[Lei],
Lu, X.Q.[Xiao-Qiang],
Li, X.L.[Xue-Long],
Exploiting spatial relation for fine-grained image classification,
PR(91), 2019, pp. 47-55.
Elsevier DOI
1904
Fine-grained image classification, Spatial relation,
Convolutional neural network
BibRef
Zhu, Y.,
Deng, X.,
Newsam, S.,
Fine-Grained Land Use Classification at the City Scale Using
Ground-Level Images,
MultMed(21), No. 7, July 2019, pp. 1825-1838.
IEEE DOI
1906
Training, Urban areas, Buildings, Convolutional neural networks,
Videos, Streaming media, Task analysis, Geo-referenced images,
proximate sensing
BibRef
Wang, R.G.[Rong-Gui],
Yao, X.C.[Xu-Chen],
Yang, J.[Juan],
Xue, L.X.[Li-Xia],
Hu, M.[Min],
Hierarchical deep transfer learning for finie-grained categorization
on micro datasets,
JVCIR(62), 2019, pp. 129-139.
Elsevier DOI
1908
Fine-grained categorization, Convolutional neural network,
Transfer learning, Multi-task learning, Model compression
BibRef
Zheng, H.,
Fu, J.,
Zha, Z.,
Luo, J.,
Mei, T.,
Learning Rich Part Hierarchies With Progressive Attention Networks
for Fine-Grained Image Recognition,
IP(29), No. 1, 2020, pp. 476-488.
IEEE DOI
1910
convolutional neural nets, image recognition,
learning (artificial intelligence), optimisation,
progressive attention
BibRef
Rodríguez, P.,
Velazquez, D.,
Cucurull, G.,
Gonfaus, J.M.,
Roca, F.X.,
Gonzàlez, J.,
Pay Attention to the Activations: A Modular Attention Mechanism for
Fine-Grained Image Recognition,
MultMed(22), No. 2, February 2020, pp. 502-514.
IEEE DOI
2001
Computer architecture, Computational modeling, Image recognition,
Task analysis, Proposals, Logic gates, Clutter,
Image Retrieval,
Deep Learning Convolutional Neural Networks Attention-based Learning
BibRef
Zhang, L.B.[Lian-Bo],
Huang, S.L.[Shao-Li],
Liu, W.[Wei],
Learning sequentially diversified representations for fine-grained
categorization,
PR(121), 2022, pp. 108219.
Elsevier DOI
2109
Fine-grained visual categorization,
Convolutional neural networks, Diversity learning, Object recognition
BibRef
Tan, Y.[Yanhao],
Rahman, M.M.[Mohammad Muntasir],
Yan, Y.[Yanfu],
Xue, J.[Jian],
Shao, L.[Ling],
Lu, K.[Ke],
Fine-Grained Categorization From RGB-D Images,
MultMed(24), 2022, pp. 917-928.
IEEE DOI
2202
Dogs, Sensors, Automobiles, Birds, Benchmark testing, Task analysis,
Image color analysis, Deep convolutional neural network, RGB-D dataset
BibRef
Liu, D.C.[Di-Chao],
Wang, Y.[Yu],
Mase, K.J.[Ken-Ji],
Kato, J.[Jien],
Recursive Multi-Scale Channel-Spatial Attention for Fine-Grained Image
Classification,
IEICE(E105-D), No. 3, March 2022, pp. 713-726.
WWW Link.
2203
BibRef
Earlier:
Attention-Based Multi-Task Learning for Fine-Grained Image
Classification,
ICIP21(1499-1503)
IEEE DOI
2201
Image processing, Regulation, Agriculture,
Convolutional neural networks, Automobiles, Task analysis, Attention Learning
BibRef
Zhu, S.[Shuo],
Zhang, X.K.[Xu-Kang],
Wang, Y.[Yu],
Wang, Z.Y.[Zong-Yang],
Sun, J.H.[Jia-Hao],
A fine-grained image classification method based on information
interaction,
IET-IPR(18), No. 14, 2024, pp. 4852-4861.
DOI Link
2501
image classification, image processing, learning (artificial intelligence)
BibRef
Deng, W.J.[Wei-Jian],
Marsh, J.[Joshua],
Gould, S.[Stephen],
Zheng, L.[Liang],
Fine-Grained Classification via Categorical Memory Networks,
IP(31), 2022, pp. 4186-4196.
IEEE DOI
2206
Prototypes, Memory modules, Visualization, Semantics,
Representation learning, Convolutional neural networks,
inter-class similarity
BibRef
Zhu, J.W.[Jian-Wei],
Li, Z.X.[Zhi-Xin],
Wei, J.[Jiahui],
Zeng, Y.F.[Yu-Fei],
Ma, H.F.[Hui-Fang],
Fine-grained bidirectional attentional generation and
knowledge-assisted networks for cross-modal retrieval,
IVC(124), 2022, pp. 104507.
Elsevier DOI
2208
Cross-modal retrieval, Graph convolutional network,
Knowledge embedding, Cross-attention, Attentional generative network
BibRef
Lang, W.X.[Wen-Xi],
Sun, H.[Han],
Xu, C.[Can],
Liu, N.Z.[Ning-Zhong],
Zhou, H.Y.[Hui-Yu],
Discriminative feature mining hashing for fine-grained image
retrieval,
JVCIR(87), 2022, pp. 103592.
Elsevier DOI
2208
Fine-grained image retrieval, Attention drop, Attention re-sample, Deep hashing
BibRef
Sun, H.[Han],
Lang, W.X.[Wen-Xi],
Xu, C.[Can],
Liu, N.Z.[Ning-Zhong],
Zhou, H.Y.[Hui-Yu],
Graph-based discriminative features learning for fine-grained image
retrieval,
SP:IC(110), 2023, pp. 116885.
Elsevier DOI
2212
Fine-grained image retrieval, Graph convolutional neural network, Deep hashing
BibRef
Liu, K.J.[Kang-Jun],
Chen, K.[Ke],
Jia, K.[Kui],
Convolutional Fine-Grained Classification With Self-Supervised Target
Relation Regularization,
IP(31), 2022, pp. 5570-5584.
IEEE DOI
2209
Feature extraction, Visualization, Representation learning,
Correlation, Codes, Encoding, Data models,
deep representation learning
BibRef
Yang, X.[Xuhui],
Wang, Y.[Yaowei],
Chen, K.[Ke],
Xu, Y.[Yong],
Tian, Y.H.[Yong-Hong],
Fine-Grained Object Classification via Self-Supervised Pose Alignment,
CVPR22(7389-7398)
IEEE DOI
2210
Representation learning, Codes, Semantics, Benchmark testing,
Image representation, Robustness, Recognition: detection,
Self- semi- meta- unsupervised learning
BibRef
Han, J.W.[Jun-Wei],
Yao, X.[Xiwen],
Cheng, G.[Gong],
Feng, X.X.[Xiao-Xu],
Xu, D.[Dong],
P-CNN: Part-Based Convolutional Neural Networks for Fine-Grained
Visual Categorization,
PAMI(44), No. 2, February 2022, pp. 579-590.
IEEE DOI
2201
Visualization, Training, Detectors, Streaming media, Measurement,
Feature extraction, Convolutional neural networks,
fine-grained visual categorization
BibRef
Koniusz, P.[Piotr],
Zhang, H.G.[Hong-Guang],
Power Normalizations in Fine-Grained Image, Few-Shot Image and Graph
Classification,
PAMI(44), No. 2, February 2022, pp. 591-609.
IEEE DOI
2201
Feature extraction, Covariance matrices, Visualization, Training,
Laplace equations, Pipelines, Eigenvalues and eigenfunctions, CNN,
heat diffusion
BibRef
Sun, X.[Xian],
Wang, P.J.[Pei-Jin],
Yan, Z.Y.[Zhi-Yuan],
Xu, F.[Feng],
Wang, R.P.[Rui-Ping],
Diao, W.H.[Wen-Hui],
Chen, J.[Jin],
Li, J.[Jihao],
Feng, Y.C.[Ying-Chao],
Xu, T.[Tao],
Weinmann, M.[Martin],
Hinz, S.[Stefan],
Wang, C.[Cheng],
Fu, K.[Kun],
FAIR1M: A benchmark dataset for fine-grained object recognition in
high-resolution remote sensing imagery,
PandRS(184), 2022, pp. 116-130.
Elsevier DOI
2202
Remote sensing images,
Fine-grained object detection and recognition, Deep learning,
Convolutional neural network (CNN)
BibRef
Xu, Q.[Qin],
Zhang, M.Q.[Meng-Quan],
Li, Y.[Yun],
Tao, Z.[Zhifu],
Learning more discriminative clues with gradual attention for
fine-grained visual categorization,
IVC(136), 2023, pp. 104753.
Elsevier DOI
2308
Fine-grained visual categorization,
Convolutional neural network, Visual attention, Self-calibrated convolution
BibRef
Yu, H.[Han],
Lu, H.[Huibin],
Zhao, M.[Min],
Li, Z.Y.[Zhuo-Yi],
Gu, G.H.[Guang-Hua],
Gradient aggregation based fine-grained image retrieval:
A unified viewpoint for CNN and Transformer,
PR(149), 2024, pp. 110248.
Elsevier DOI
2403
A discriminative representation hides in the gradients of convolution filters.
Fine-grained image retrieval, Convolution filters gradient aggregation,
CFGA feature, Deep metric learning
BibRef
Chen, T.[Tao],
Wang, L.J.[Li-Jie],
Liu, Y.[Yang],
Yu, H.[Haisheng],
DACBN: Dual attention convolutional broad network for fine-grained
visual recognition,
PR(156), 2024, pp. 110749.
Elsevier DOI
2408
Fine-grained visual classification, Dual attention mechanism,
Broad learning system, Discriminative features
BibRef
Mahmoudi, M.A.[M. Amine],
Chetouani, A.[Aladine],
Boufera, F.[Fatma],
Tabia, H.[Hedi],
Taylor Series Kernelized Layer for Fine-Grained Recognition,
ICIP21(1914-1918)
IEEE DOI
2201
Image recognition, Multilayer perceptrons, Taylor series,
Hilbert space, Convolutional neural networks, Kernel,
Multilayer Perceptrons
BibRef
Cheng, J.C.[Jia-Cheng],
Vasconcelos, N.M.[Nuno M.],
Learning Deep Classifiers Consistent with Fine-Grained Novelty
Detection,
CVPR21(1664-1673)
IEEE DOI
2111
Measurement, Training, Visualization,
Probabilistic logic, Convolutional neural networks
BibRef
Ji, R.,
Wen, L.,
Zhang, L.,
Du, D.,
Wu, Y.,
Zhao, C.,
Liu, X.,
Huang, F.,
Attention Convolutional Binary Neural Tree for Fine-Grained Visual
Categorization,
CVPR20(10465-10474)
IEEE DOI
2008
Vegetation, Routing, Visualization, Task analysis, Decision trees,
Convolutional codes, Binary trees
BibRef
Taherkhani, F.,
Kazemi, H.,
Dabouei, A.,
Dawson, J.,
Nasrabadi, N.,
A Weakly Supervised Fine Label Classifier Enhanced by Coarse
Supervision,
ICCV19(6458-6467)
IEEE DOI
2004
convolutional neural nets, feature extraction,
image classification, image enhancement, image representation
BibRef
Yang, H.,
Wu, H.,
Chen, H.,
Detecting 11K Classes: Large Scale Object Detection Without
Fine-Grained Bounding Boxes,
ICCV19(9804-9812)
IEEE DOI
2004
convolutional neural nets, image annotation,
learning (artificial intelligence), object detection,
Training
BibRef
Wagner, J.[Jorg],
Kohler, J.M.[Jan Mathias],
Gindele, T.[Tobias],
Hetzel, L.[Leon],
Wiedemer, J.T.[Jakob Thaddaus],
Behnke, S.[Sven],
Interpretable and Fine-Grained Visual Explanations for Convolutional
Neural Networks,
CVPR19(9089-9099).
IEEE DOI
2002
BibRef
Feng, Z.,
Fu, K.,
Zhao, Q.,
Learning to Focus and Discriminate for Fine-Grained Classification,
ICIP19(415-419)
IEEE DOI
1910
Fine-grained classification, region proposal,
discriminative region localization, attention, convolutional neural networks
BibRef
Xin, Q.,
Lv, T.,
Gao, H.,
Random Part Localization Model for Fine Grained Image Classification,
ICIP19(420-424)
IEEE DOI
1910
fine-grained, convolutional neural network, random part localization
BibRef
Zhong, W.,
Jiang, L.,
Zhang, T.,
Ji, J.,
Xiong, H.,
A Multi-part Convolutional Attention Network for Fine-Grained Image
Recognition,
ICPR18(1857-1862)
IEEE DOI
1812
Object detection, Feature extraction, Streaming media,
Image recognition, Image resolution, Task analysis, Automobiles
BibRef
Simonelli, A.,
de Natale, F.G.B.,
Messelodi, S.,
Bulo, S.R.,
Increasingly Specialized Ensemble of Convolutional Neural Networks
for Fine-Grained Recognition,
ICIP18(594-598)
IEEE DOI
1809
Feature extraction, Training, Zinc, Automobiles, Birds,
Heating systems, Convolutional neural networks, attention analysis
BibRef
Wang, Y.,
Morariu, V.I.,
Davis, L.S.,
Learning a Discriminative Filter Bank Within a CNN for Fine-Grained
Recognition,
CVPR18(4148-4157)
IEEE DOI
1812
Detectors, Encoding, Convolutional codes, Neurons,
Feature extraction, Network architecture, Convolution
BibRef
Cai, S.J.[Si-Jia],
Zuo, W.M.[Wang-Meng],
Zhang, L.[Lei],
Higher-Order Integration of Hierarchical Convolutional Activations
for Fine-Grained Visual Categorization,
ICCV17(511-520)
IEEE DOI
1802
neural nets, polynomials, statistics, FGVC,
fine-grained visual categorization,
BibRef
Kong, S.[Shu],
Fowlkes, C.C.[Charless C.],
Pixel-Wise Attentional Gating for Scene Parsing,
WACV19(1024-1033)
IEEE DOI
1904
BibRef
And:
Recurrent Scene Parsing with Perspective Understanding in the Loop,
CVPR18(956-965)
IEEE DOI
1812
Depth aware to deal with object scale.
convolutional neural nets, image segmentation,
learning (artificial intelligence), surface normal estimation,
Routing.
Semantics, Computer architecture, Training,
Task analysis, Computational modeling, Convolution
BibRef
Zheng, H.,
Fu, J.,
Mei, T.,
Luo, J.,
Learning Multi-attention Convolutional Neural Network for
Fine-Grained Image Recognition,
ICCV17(5219-5227)
IEEE DOI
1802
feature extraction, image recognition, image representation,
learning (artificial intelligence), neural nets,
Visualization
BibRef
Fu, J.,
Zheng, H.,
Mei, T.,
Look Closer to See Better: Recurrent Attention Convolutional Neural
Network for Fine-Grained Image Recognition,
CVPR17(4476-4484)
IEEE DOI
1711
Birds, Feature extraction, Image recognition, Neural networks,
Proposals, Visualization
BibRef
Ge, Z.Y.[Zong-Yuan],
McCool, C.[Chris],
Sanderson, C.[Conrad],
Wang, P.[Peng],
Liu, L.Q.[Ling-Qiao],
Reid, I.D.[Ian D.],
Corke, P.[Peter],
Exploiting Temporal Information for DCNN-Based Fine-Grained Object
Classification,
DICTA16(1-6)
IEEE DOI
1701
BibRef
Ai, S.S.[Shan-Shan],
Jia, C.Y.[Cai-Yan],
Chen, Z.N.[Zhi-Neng],
Large-Scale Product Classification via Spatial Attention Based CNN
Learning and Multi-class Regression,
MMMod17(I: 176-188).
Springer DOI
1701
BibRef
Diba, A.[Ali],
Pazandeh, A.M.[Ali Mohammad],
Pirsiavash, H.[Hamed],
Van Gool, L.J.[Luc J.],
DeepCAMP: Deep Convolutional Action Attribute Mid-Level Patterns,
CVPR16(3557-3565)
IEEE DOI
1612
BibRef
Zhang, H.[Han],
Xu, T.[Tao],
Elhoseiny, M.[Mohamed],
Huang, X.L.[Xiao-Lei],
Zhang, S.T.[Shao-Ting],
Elgammal, A.E.[Ahmed E.],
Metaxas, D.N.[Dimitris N.],
SPDA-CNN: Unifying Semantic Part Detection and Abstraction for
Fine-Grained Recognition,
CVPR16(1143-1152)
IEEE DOI
1612
BibRef
Chevalier, M.,
Thome, N.,
Cord, M.,
Fournier, J.,
Henaff, G.,
Dusch, E.,
LR-CNN for fine-grained classification with varying resolution,
ICIP15(3101-3105)
IEEE DOI
1512
Convolutional neural networks
BibRef
Ge, Z.[Zong_Yuan],
Bewley, A.,
McCool, C.[Chris],
Corke, P.[Peter],
Upcroft, B.,
Sanderson, C.[Conrad],
Fine-grained classification via mixture of deep convolutional neural
networks,
WACV16(1-6)
IEEE DOI
1606
BibRef
Earlier: A1, A3, A6, A4, Only:
Modelling local deep convolutional neural network features to improve
fine-grained image classification,
ICIP15(4112-4116)
IEEE DOI
1512
Gaussian mixture models
BibRef
Zhang, N.[Ning],
Donahue, J.[Jeff],
Girshick, R.[Ross],
Darrell, T.J.[Trevor J.],
Part-Based R-CNNs for Fine-Grained Category Detection,
ECCV14(I: 834-849).
Springer DOI
1408
BibRef
Chapter on Matching and Recognition Using Volumes, High Level Vision Techniques, Invariants continues in
Context Supplied by Text or Language .