22.2.26.2 Urban Functional Area Determination, Analysis

Chapter Contents (Back)
Urban Land Use. Urban Functional Area. Functional Area. Often done via traffic or vehicle analysis.
See also GIS: Economic Data Analysis and Representation.

Zhang, X.Y.[Xiu-Yuan], Du, S.H.[Shi-Hong], Wang, Q.[Qiao],
Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data,
PandRS(132), No. 1, 2017, pp. 170-184.
Elsevier DOI 1710
Urban functional zone BibRef

Tu, W.[Wei], Hu, Z.W.[Zhong-Wen], Li, L.[Lefei], Cao, J.Z.[Jin-Zhou], Jiang, J.C.[Jin-Cheng], Li, Q.P.[Qiu-Ping], Li, Q.Q.[Qing-Quan],
Portraying Urban Functional Zones by Coupling Remote Sensing Imagery and Human Sensing Data,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link 1802
BibRef

Zhang, X.Y.[Xiu-Yuan], Du, S.H.[Shi-Hong], Wang, Q.[Qiao], Zhou, W.Q.[Wei-Qi],
Multiscale Geoscene Segmentation for Extracting Urban Functional Zones from VHR Satellite Images,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link 1804
BibRef

Du, S.J.[Shou-Ji], Du, S.H.[Shi-Hong], Liu, B.[Bo], Zhang, X.Y.[Xiu-Yuan],
Context-Enabled Extraction of Large-Scale Urban Functional Zones from Very-High-Resolution Images: A Multiscale Segmentation Approach,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Song, J.C.[Jin-Chao], Lin, T.[Tao], Li, X.[Xinhu], Prishchepov, A.V.[Alexander V.],
Mapping Urban Functional Zones by Integrating Very High Spatial Resolution Remote Sensing Imagery and Points of Interest: A Case Study of Xiamen, China,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link 1812
BibRef

Zhang, X.Y.[Xiao-Yi], Li, W.W.[Wen-Wen], Zhang, F.[Feng], Liu, R.Y.[Ren-Yi], Du, Z.H.[Zhen-Hong],
Identifying Urban Functional Zones Using Public Bicycle Rental Records and Point-of-Interest Data,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Yi, D.S.[Di-Sheng], Yang, J.[Jing], Liu, J.J.[Jing-Jing], Liu, Y.[Yusi], Zhang, J.[Jing],
Quantitative Identification of Urban Functions with Fishers' Exact Test and POI Data Applied in Classifying Urban Districts: A Case Study within the Sixth Ring Road in Beijing,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Feng, Y.N.[Yu-Ning], Du, S.H.[Shi-Hong], Myint, S.W.[Soe W.], Shu, M.[Mi],
Do Urban Functional Zones Affect Land Surface Temperature Differently? A Case Study of Beijing, China,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Huang, X.[Xin], Wang, Y.[Ying],
Investigating the effects of 3D urban morphology on the surface urban heat island effect in urban functional zones by using high-resolution remote sensing data: A case study of Wuhan, Central China,
PandRS(152), 2019, pp. 119-131.
Elsevier DOI 1905
Surface urban heat island, Land surface temperature, 3D urban morphology, Landscape, Urban functional zone BibRef

Qian, Z.[Zhen], Liu, X.[Xintao], Tao, F.[Fei], Zhou, T.[Tong],
Identification of Urban Functional Areas by Coupling Satellite Images and Taxi GPS Trajectories,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Zhang, X.Y.[Xiu-Yuan], Du, S.H.[Shi-Hong], Zheng, Z.J.[Zhi-Jia],
Heuristic sample learning for complex urban scenes: Application to urban functional-zone mapping with VHR images and POI data,
PandRS(161), 2020, pp. 1-12.
Elsevier DOI 2002
Urban functional zones, Image classification, Sample selection, Heuristic sample learning, Object based image analysis BibRef

Xu, S.Y.[Sheng-Yu], Qing, L.[Linbo], Han, L.M.[Long-Mei], Liu, M.[Mei], Peng, Y.H.[Yong-Hong], Shen, L.F.[Li-Fang],
A New Remote Sensing Images and Point-of-Interest Fused (RPF) Model for Sensing Urban Functional Regions,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Bao, H.Q.[Han-Qing], Ming, D.P.[Dong-Ping], Guo, Y.[Ya], Zhang, K.[Kui], Zhou, K.Q.[Ke-Qi], Du, S.[Shigao],
DFCNN-Based Semantic Recognition of Urban Functional Zones by Integrating Remote Sensing Data and POI Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Wang, H.F.[Hua-Feng], Cheng, X.L.[Xia-Lan], Nizamani, M.M.[Mir Muhammad], Balfour, K.[Kelly], Da, L.J.[Liang-Jun], Zhu, Z.X.[Zhi-Xin], Qureshi, S.[Salman],
An Integrated Approach to Study Spatial Patterns and Drivers of Land Cover Within Urban Functional Units: A Multi-City Comparative Study in China,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Yan, Y.M.[Yi-Ming], Wang, Y.Y.[Yuan-Yuan], Du, Z.H.[Zhen-Hong], Zhang, F.[Feng], Liu, R.Y.[Ren-Yi], Ye, X.Y.[Xin-Yue],
Where Urban Youth Work and Live: A Data-Driven Approach to Identify Urban Functional Areas at a Fine Scale,
IJGI(9), No. 1, 2020, pp. xx-yy.
DOI Link 2001
BibRef

Cao, R.[Rui], Tu, W.[Wei], Yang, C.X.[Cui-Xin], Li, Q.[Qing], Liu, J.[Jun], Zhu, J.S.[Jia-Song], Zhang, Q.[Qian], Li, Q.Q.[Qing-Quan], Qiu, G.P.[Guo-Ping],
Deep learning-based remote and social sensing data fusion for urban region function recognition,
PandRS(163), 2020, pp. 82-97.
Elsevier DOI 2005
Urban function recognition, Multi-modal data fusion, Remote sensing, Social sensing, Deep learning BibRef

Xu, N.[Nan], Luo, J.C.[Jian-Cheng], Wu, T.J.[Tian-Jun], Dong, W.[Wen], Liu, W.[Wei], Zhou, N.[Nan],
Identification and Portrait of Urban Functional Zones Based on Multisource Heterogeneous Data and Ensemble Learning,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link 2102
BibRef

Zhang, C.K.[Cheng-Kun], Xu, L.C.[Liu-Chang], Yan, Z.[Zhen], Wu, S.S.[Sen-Sen],
A GloVe-Based POI Type Embedding Model for Extracting and Identifying Urban Functional Regions,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Cao, S.[Su], Du, S.H.[Shi-Hong], Yang, S.[Shuwen], Du, S.H.[Shou-Hang],
Functional Classification of Urban Parks Based on Urban Functional Zone and Crowd-Sourced Geographical Data,
IJGI(10), No. 12, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Luo, S.H.[Shao-Hua], Liu, Y.[Yang], Du, M.Y.[Ming-Yi], Gao, S.[Siyan], Wang, P.F.[Peng-Fei], Liu, X.Y.[Xiao-Yu],
The Influence of Spatial Grid Division on the Layout Analysis of Urban Functional Areas,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Zhu, J.W.[Jia-Wei], Tao, C.[Chao], Lin, X.[Xin], Peng, J.[Jian], Huang, H.Z.[Hao-Zhe], Chen, L.[Li], Wang, Q.J.[Qiong-Jie],
A Multiple Subspaces-Based Model: Interpreting Urban Functional Regions with Big Geospatial Data,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link 2103
BibRef

Sun, Z.H.[Zhi-Hao], Jiao, H.Z.[Hong-Zan], Wu, H.[Hao], Peng, Z.H.[Zheng-Hong], Liu, L.B.[Ling-Bo],
Block2vec: An Approach for Identifying Urban Functional Regions by Integrating Sentence Embedding Model and Points of Interest,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Chang, S.Z.[Shou-Zhi], Wang, Z.M.[Zong-Ming], Mao, D.H.[De-Hua], Liu, F.S.[Fu-Shen], Lai, L.[Lina], Yu, H.[Hao],
Identifying Urban Functional Areas in China's Changchun City from Sentinel-2 Images and Social Sensing Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Chen, S.[Siya], Zhang, H.Y.[Hong-Yan], Yang, H.X.[Hang-Xing],
Urban Functional Zone Recognition Integrating Multisource Geographic Data,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Yu, Z.W.[Zhao-Wu], Jing, Y.C.[Yong-Cai], Yang, G.Y.[Gao-Yuan], Sun, R.H.[Ran-Hao],
A New Urban Functional Zone-Based Climate Zoning System for Urban Temperature Study,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link 2101
BibRef

Xu, Z.H.[Zhi-Hao], Li, J.B.[Jian-Bo], Lv, Z.Q.[Zhi-Qiang], Dong, C.H.[Chuan-Hao], Fu, L.P.[Li-Ping],
A classification method for urban functional regions based on the transfer rate of empty cars,
IET-ITS(16), No. 2, 2022, pp. 133-147.
DOI Link 2201
BibRef

Li, Q.[Qian], Cui, C.[Caihui], Liu, F.[Feng], Wu, Q.[Qirui], Run, Y.[Yadi], Han, Z.G.[Zhi-Gang],
Multidimensional Urban Vitality on Streets: Spatial Patterns and Influence Factor Identification Using Multisource Urban Data,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link 2201
BibRef

Pan, T.[Tao], Kuang, W.H.[Wen-Hui], Pan, R.[Ruoyi], Niu, Z.G.[Zhen-Guo], Dou, Y.[Yinyin],
Hierarchical Urban Land Mappings and Their Distribution with Physical Medium Environments Using Time Series of Land Resource Images in Beijing, China (1981-2021),
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Sun, B.[Bo], Zhang, Y.[Yang], Zhou, Q.M.[Qi-Ming], Zhang, X.C.[Xin-Chang],
Effectiveness of Semi-Supervised Learning and Multi-Source Data in Detailed Urban Landuse Mapping with a Few Labeled Samples,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Song, Z.L.[Zheng-Lin], Wang, H.[Hong], Qin, S.H.[Shu-Hong], Li, X.[Xiuneng], Yang, Y.[Yi], Wang, Y.C.[Yi-Cong], Meng, P.Y.[Peng-Yu],
Building-Level Urban Functional Area Identification Based on Multi-Attribute Aggregated Data from Cell Phones: A Method Combining Multidimensional Time Series with a SOM Neural Network,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Yu, J.[Jie], Zeng, P.[Peng], Yu, Y.[Yaying], Yu, H.W.[Hong-Wei], Huang, L.[Liang], Zhou, D.B.[Dong-Bo],
A Combined Convolutional Neural Network for Urban Land-Use Classification with GIS Data,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link 2203
BibRef

Rahman, M.M.[Md. Mostafizur], Szabó, G.[György],
A Novel Composite Index to Measure Environmental Benefits in Urban Land Use Optimization Problems,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Saboori, M.[Mojtaba], Homayouni, S.[Saeid], Shah-Hosseini, R.[Reza], Zhang, Y.[Ying],
Optimum Feature and Classifier Selection for Accurate Urban Land Use/Cover Mapping from Very High Resolution Satellite Imagery,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Shao, S.W.[Shi-Wei], Yu, M.T.[Meng-Ting], Huang, Y.M.[Yi-Min], Wang, Y.H.[Yi-Heng], Tian, J.[Jing], Ren, C.[Chang],
Towards a Core Set of Landscape Metrics of Urban Land Use in Wuhan, China,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Pavlovic, M.[Marko], Ilic, S.[Slobodan], Antonic, N.[Nenad], Culibrk, D.[Dubravko],
Monitoring the Impact of Large Transport Infrastructure on Land Use and Environment Using Deep Learning and Satellite Imagery,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Ye, F.H.[Fang-Hong], Ai, T.H.[Ting-Hua], Wang, J.M.[Jia-Ming], Yao, Y.[Yuan], Zhou, Z.[Zheng],
A Method for Classifying Complex Features in Urban Areas Using Video Satellite Remote Sensing Data,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Xing, Z.L.[Zhao-Lian], Guo, W.M.[Wei-Min],
A New Urban Space Analysis Method Based on Space Syntax and Geographic Information System Using Multisource Data,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Ma, L.[Lei], Seipel, S.[Stefan], Brandt, S.A.[Sven Anders], Ma, D.[Ding],
A New Graph-Based Fractality Index to Characterize Complexity of Urban Form,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Xu, X.J.[Xiu-Juan], Bai, Y.L.[Yu-Lin], Liu, Y.[Yu], Zhao, X.W.[Xiao-Wei], Sun, Y.Z.[Yu-Zhi],
MM-UrbanFAC: Urban Functional Area Classification Model Based on Multimodal Machine Learning,
ITS(23), No. 7, July 2022, pp. 8488-8497.
IEEE DOI 2207
Data models, Predictive models, Machine learning, Boosting, Analytical models, Urban areas, Remote sensing, feature engineering BibRef

Pastorino, M.[Martina], Gallo, F.[Federico], di Febbraro, A.[Angela], Moser, G.[Gabriele], Sacco, N.[Nicola], Serpico, S.B.[Sebastiano B.],
Multimodal Fusion of Mobility Demand Data and Remote Sensing Imagery for Urban Land-Use and Land-Cover Mapping,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Tao, Y.M.[Yi-Ming], Ye, R.[Ruhai],
Analysis of the Spatio-Temporal Characteristics of Nanjing's Urban Expansion and Its Driving Mechanisms,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Ye, Y.X.[Yu-Xuan], Wang, Y.F.[Ya-Fei], Liao, J.F.[Jin-Feng], Chen, J.Z.[Jie-Zhi], Zou, Y.F.[Yang-Fan], Liu, Y.[Yuan], Feng, C.Y.[Chun-Ye],
Spatiotemporal Pattern Analysis of Land Use Functions in Contiguous Coastal Cities Based on Long-Term Time Series Remote Sensing Data: A Case Study of Bohai Sea Region, China,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Lan, T.[Tian], Cheng, H.[Hao], Wang, Y.[Yi], Wen, B.H.[Bi-Han],
Site Selection via Learning Graph Convolutional Neural Networks: A Case Study of Singapore,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Zhao, W.F.[Wu-Fan], Li, M.M.[Meng-Meng], Wu, C.[Cai], Zhou, W.[Wen], Chu, G.Z.[Guo-Zhong],
Identifying Urban Functional Regions from High-Resolution Satellite Images Using a Context-Aware Segmentation Network,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Deng, Y.[Yue], He, R.X.[Ri-Xing],
Refined Urban Functional Zone Mapping by Integrating Open-Source Data,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Deng, Z.C.[Zhi-Cheng], You, X.T.[Xiang-Ting], Shi, Z.Y.[Zhao-Yang], Gao, H.[Hong], Hu, X.[Xu], Yu, Z.Y.[Zhao-Yuan], Yuan, L.W.[Lin-Wang],
Identification of Urban Functional Zones Based on the Spatial Specificity of Online Car-Hailing Traffic Cycle,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Yan, Y.W.[Ying-Wei], Deng, Y.B.[Ying-Bin], Yang, J.[Ji], Li, Y.[Yong], Ye, X.Y.[Xin-Yue], Xu, J.H.[Jian-Hui], Ye, Y.Y.[Yu-Yao],
Exploring the Applicability of Self-Organizing Maps for Ecosystem Service Zoning of the Guangdong-Hong Kong-Macao Greater Bay Area,
IJGI(11), No. 9, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Huang, C.[Chong], Xiao, C.L.[Chao-Liang], Rong, L.S.[Li-Shan],
Integrating Point-of-Interest Density and Spatial Heterogeneity to Identify Urban Functional Areas,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Fang, F.[Fang], Zeng, L.[Linyun], Li, S.[Shengwen], Zheng, D.[Daoyuan], Zhang, J.[Jiahui], Liu, Y.Y.[Yuan-Yuan], Wan, B.[Bo],
Spatial context-aware method for urban land use classification using street view images,
PandRS(192), 2022, pp. 1-12.
Elsevier DOI 2209
Land use classification, Street view image, Spatial-context graph, Deep learning BibRef

Zhang, N.H.[Neng-Huan], Wang, Y.B.[Yong-Bin], Wang, X.G.[Xiao-Guang], Yu, P.[Peng],
A Multi-Modal Fusion Network Guided by Feature Co-Occurrence for Urban Region Function Recognition,
IEICE(E105-D), No. 10, October 2022, pp. 1769-1779.
WWW Link. 2210
BibRef

Nie, W.Y.[Wen-Yu], Fan, X.W.[Xi-Wei], Nie, G.Z.[Gao-Zhong], Li, H.Y.[Hua-Yue], Xia, C.X.[Chao-Xu],
Building Function Type Identification Using Mobile Signaling Data Based on a Machine Learning Method,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link 2210
BibRef

Chen, Y.[Yue], Qian, H.Z.[Hai-Zhong], Wang, X.[Xiao], Wang, D.[Di], Han, L.J.[Li-Jian],
A GloVe Model for Urban Functional Area Identification Considering Nonlinear Spatial Relationships between Points of Interest,
IJGI(11), No. 10, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Li, T.[Tong], Xiu, C.L.[Chun-Liang], Yu, H.S.[Hui-Sheng],
Urban Human-Land Spatial Mismatch Analysis from a Source-Sink Perspective with ICT Support,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Xiao, T.[Tong], Wan, Y.L.[Yi-Liang], Jin, R.[Rui], Qin, J.X.[Jian-Xin], Wu, T.[Tao],
Integrating Gaussian Mixture Dual-Clustering and DBSCAN for Exploring Heterogeneous Characteristics of Urban Spatial Agglomeration Areas,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Wang, X.[Xi], Chen, B.[Bin], Li, X.C.[Xue-Cao], Zhang, Y.X.[Yu-Xin], Ling, X.Y.[Xian-Yao], Wang, J.[Jie], Li, W.M.[Wei-Min], Wen, W.[Wu], Gong, P.[Peng],
Grid-Based Essential Urban Land Use Classification: A Data and Model Driven Mapping Framework in Xiamen City,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Deng, R.[Rui], Guan, Y.N.[Yan-Ning], Cai, D.[Danlu], Yang, T.[Tao], Fraedrich, K.[Klaus], Zhang, C.Y.[Chun-Yan], Tang, J.K.[Jia-Kui], Liao, Z.W.[Zhou-Wei], Wei, Z.S.[Zhi-Shou], Guo, S.[Shan],
Supervised versus Semi-Supervised Urban Functional Area Prediction: Uncertainty, Robustness and Sensitivity,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link 2301
BibRef

Wang, J.F.[Ji-Fei], Feng, C.C.[Chen-Chieh], Guo, Z.[Zhou],
A Novel Graph-Based Framework for Classifying Urban Functional Zones with Multisource Data and Human Mobility Patterns,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link 2302
BibRef

Chang, S.Z.[Shou-Zhi], Zhao, J.[Jian], Jia, M.M.[Ming-Ming], Mao, D.H.[De-Hua], Wang, Z.M.[Zong-Ming], Hou, B.[Boyu],
Land Use Change and Hotspot Identification in Harbin-Changchun Urban Agglomeration in China from 1990 to 2020,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Shi, Y.[Yishao], Zheng, J.W.[Jian-Wen], Pei, X.W.[Xiao-Wen],
Measurement Method and Influencing Mechanism of Urban Subdistrict Vitality in Shanghai Based on Multisource Data,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Ray, R.[Ratnadeep], Das, A.[Abhinandan], Hasan, M.S.U.[Mohd Sayeed Ul], Aldrees, A.[Ali], Islam, S.[Saiful], Khan, M.A.[Mohammad Amir], Lama, G.F.C.[Giuseppe Francesco Cesare],
Quantitative Analysis of Land Use and Land Cover Dynamics using Geoinformatics Techniques: A Case Study on Kolkata Metropolitan Development Authority (KMDA) in West Bengal, India,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Zhao, L.[Lin], Yang, C.H.[Chuan-Hao], Zhao, Y.C.[Yu-Chen], Wang, Q.[Qian], Zhang, Q.P.[Qi-Peng],
Spatial Correlations of Land Use Carbon Emissions in Shandong Peninsula Urban Agglomeration: A Perspective from City Level Using Remote Sensing Data,
RS(15), No. 6, 2023, pp. 1488.
DOI Link 2304
BibRef

Zhang, Y.[Yan], Liu, P.Y.[Peng-Yuan], Biljecki, F.[Filip],
Knowledge and topology: A two layer spatially dependent graph neural networks to identify urban functions with time-series street view image,
PandRS(198), 2023, pp. 153-168.
Elsevier DOI 2304
GeoAI, Natural language processing, GeoKG, Pretrained model, Knowledge graph, Multi-modal BibRef


Zhang, C.[Caiyu], Li, M.L.[Ming-Lei], Wei, D.Z.[Da-Zhou], Wu, B.[Bochun],
Enhanced DeepLabv3+ for Urban Land Use Classification Based on UAV-Borne Images,
ICIVC22(449-454)
IEEE DOI 2301
Support vector machines, Industries, Image color analysis, Urban areas, Semantics, Forestry, Feature extraction, CRF BibRef

Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Change Detection, Urban Area Land Cover, Temporal Analysis .


Last update:May 22, 2023 at 22:32:27