Zhang, X.Y.[Xiu-Yuan],
Du, S.H.[Shi-Hong],
Wang, Q.[Qiao],
Hierarchical semantic cognition for urban functional zones with VHR
satellite images and POI data,
PandRS(132), No. 1, 2017, pp. 170-184.
Elsevier DOI
1710
Urban functional zone
BibRef
Tu, W.[Wei],
Hu, Z.W.[Zhong-Wen],
Li, L.[Lefei],
Cao, J.Z.[Jin-Zhou],
Jiang, J.C.[Jin-Cheng],
Li, Q.P.[Qiu-Ping],
Li, Q.Q.[Qing-Quan],
Portraying Urban Functional Zones by Coupling Remote Sensing Imagery
and Human Sensing Data,
RS(10), No. 1, 2018, pp. xx-yy.
DOI Link
1802
BibRef
Zhang, X.Y.[Xiu-Yuan],
Du, S.H.[Shi-Hong],
Wang, Q.[Qiao],
Zhou, W.Q.[Wei-Qi],
Multiscale Geoscene Segmentation for Extracting Urban Functional
Zones from VHR Satellite Images,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Du, S.J.[Shou-Ji],
Du, S.H.[Shi-Hong],
Liu, B.[Bo],
Zhang, X.Y.[Xiu-Yuan],
Context-Enabled Extraction of Large-Scale Urban Functional Zones from
Very-High-Resolution Images: A Multiscale Segmentation Approach,
RS(11), No. 16, 2019, pp. xx-yy.
DOI Link
1909
BibRef
Song, J.C.[Jin-Chao],
Lin, T.[Tao],
Li, X.[Xinhu],
Prishchepov, A.V.[Alexander V.],
Mapping Urban Functional Zones by Integrating Very High Spatial
Resolution Remote Sensing Imagery and Points of Interest:
A Case Study of Xiamen, China,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Zhang, X.Y.[Xiao-Yi],
Li, W.W.[Wen-Wen],
Zhang, F.[Feng],
Liu, R.Y.[Ren-Yi],
Du, Z.H.[Zhen-Hong],
Identifying Urban Functional Zones Using Public Bicycle Rental
Records and Point-of-Interest Data,
IJGI(7), No. 12, 2018, pp. xx-yy.
DOI Link
1901
BibRef
Yi, D.S.[Di-Sheng],
Yang, J.[Jing],
Liu, J.J.[Jing-Jing],
Liu, Y.[Yusi],
Zhang, J.[Jing],
Quantitative Identification of Urban Functions with Fishers' Exact
Test and POI Data Applied in Classifying Urban Districts:
A Case Study within the Sixth Ring Road in Beijing,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link
1912
BibRef
Feng, Y.N.[Yu-Ning],
Du, S.H.[Shi-Hong],
Myint, S.W.[Soe W.],
Shu, M.[Mi],
Do Urban Functional Zones Affect Land Surface Temperature
Differently? A Case Study of Beijing, China,
RS(11), No. 15, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Huang, X.[Xin],
Wang, Y.[Ying],
Investigating the effects of 3D urban morphology on the surface urban
heat island effect in urban functional zones by using high-resolution
remote sensing data: A case study of Wuhan, Central China,
PandRS(152), 2019, pp. 119-131.
Elsevier DOI
1905
Surface urban heat island, Land surface temperature,
3D urban morphology, Landscape, Urban functional zone
BibRef
Qian, Z.[Zhen],
Liu, X.[Xintao],
Tao, F.[Fei],
Zhou, T.[Tong],
Identification of Urban Functional Areas by Coupling Satellite Images
and Taxi GPS Trajectories,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link
2008
BibRef
Zhang, X.Y.[Xiu-Yuan],
Du, S.H.[Shi-Hong],
Zheng, Z.J.[Zhi-Jia],
Heuristic sample learning for complex urban scenes: Application to
urban functional-zone mapping with VHR images and POI data,
PandRS(161), 2020, pp. 1-12.
Elsevier DOI
2002
Urban functional zones, Image classification, Sample selection,
Heuristic sample learning, Object based image analysis
BibRef
Xu, S.Y.[Sheng-Yu],
Qing, L.[Linbo],
Han, L.M.[Long-Mei],
Liu, M.[Mei],
Peng, Y.H.[Yong-Hong],
Shen, L.F.[Li-Fang],
A New Remote Sensing Images and Point-of-Interest Fused (RPF) Model
for Sensing Urban Functional Regions,
RS(12), No. 6, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Bao, H.Q.[Han-Qing],
Ming, D.P.[Dong-Ping],
Guo, Y.[Ya],
Zhang, K.[Kui],
Zhou, K.Q.[Ke-Qi],
Du, S.[Shigao],
DFCNN-Based Semantic Recognition of Urban Functional Zones by
Integrating Remote Sensing Data and POI Data,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Wang, H.F.[Hua-Feng],
Cheng, X.L.[Xia-Lan],
Nizamani, M.M.[Mir Muhammad],
Balfour, K.[Kelly],
Da, L.J.[Liang-Jun],
Zhu, Z.X.[Zhi-Xin],
Qureshi, S.[Salman],
An Integrated Approach to Study Spatial Patterns and Drivers of Land
Cover Within Urban Functional Units: A Multi-City Comparative Study
in China,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link
2007
BibRef
Yan, Y.M.[Yi-Ming],
Wang, Y.Y.[Yuan-Yuan],
Du, Z.H.[Zhen-Hong],
Zhang, F.[Feng],
Liu, R.Y.[Ren-Yi],
Ye, X.Y.[Xin-Yue],
Where Urban Youth Work and Live: A Data-Driven Approach to Identify
Urban Functional Areas at a Fine Scale,
IJGI(9), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Cao, R.[Rui],
Tu, W.[Wei],
Yang, C.X.[Cui-Xin],
Li, Q.[Qing],
Liu, J.[Jun],
Zhu, J.S.[Jia-Song],
Zhang, Q.[Qian],
Li, Q.Q.[Qing-Quan],
Qiu, G.P.[Guo-Ping],
Deep learning-based remote and social sensing data fusion for urban
region function recognition,
PandRS(163), 2020, pp. 82-97.
Elsevier DOI
2005
Urban function recognition, Multi-modal data fusion,
Remote sensing, Social sensing, Deep learning
BibRef
Xu, N.[Nan],
Luo, J.C.[Jian-Cheng],
Wu, T.J.[Tian-Jun],
Dong, W.[Wen],
Liu, W.[Wei],
Zhou, N.[Nan],
Identification and Portrait of Urban Functional Zones Based on
Multisource Heterogeneous Data and Ensemble Learning,
RS(13), No. 3, 2021, pp. xx-yy.
DOI Link
2102
BibRef
Zhang, C.K.[Cheng-Kun],
Xu, L.C.[Liu-Chang],
Yan, Z.[Zhen],
Wu, S.S.[Sen-Sen],
A GloVe-Based POI Type Embedding Model for Extracting and Identifying
Urban Functional Regions,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Cao, S.[Su],
Du, S.H.[Shi-Hong],
Yang, S.[Shuwen],
Du, S.H.[Shou-Hang],
Functional Classification of Urban Parks Based on Urban Functional
Zone and Crowd-Sourced Geographical Data,
IJGI(10), No. 12, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Luo, S.H.[Shao-Hua],
Liu, Y.[Yang],
Du, M.Y.[Ming-Yi],
Gao, S.[Siyan],
Wang, P.F.[Peng-Fei],
Liu, X.Y.[Xiao-Yu],
The Influence of Spatial Grid Division on the Layout Analysis of
Urban Functional Areas,
IJGI(10), No. 3, 2021, pp. xx-yy.
DOI Link
2104
BibRef
Zhu, J.W.[Jia-Wei],
Tao, C.[Chao],
Lin, X.[Xin],
Peng, J.[Jian],
Huang, H.Z.[Hao-Zhe],
Chen, L.[Li],
Wang, Q.J.[Qiong-Jie],
A Multiple Subspaces-Based Model:
Interpreting Urban Functional Regions with Big Geospatial Data,
IJGI(10), No. 2, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Sun, Z.H.[Zhi-Hao],
Jiao, H.Z.[Hong-Zan],
Wu, H.[Hao],
Peng, Z.H.[Zheng-Hong],
Liu, L.B.[Ling-Bo],
Block2vec: An Approach for Identifying Urban Functional Regions by
Integrating Sentence Embedding Model and Points of Interest,
IJGI(10), No. 5, 2021, pp. xx-yy.
DOI Link
2106
BibRef
Chang, S.Z.[Shou-Zhi],
Wang, Z.M.[Zong-Ming],
Mao, D.H.[De-Hua],
Liu, F.S.[Fu-Shen],
Lai, L.[Lina],
Yu, H.[Hao],
Identifying Urban Functional Areas in China's Changchun City from
Sentinel-2 Images and Social Sensing Data,
RS(13), No. 22, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Chen, S.[Siya],
Zhang, H.Y.[Hong-Yan],
Yang, H.X.[Hang-Xing],
Urban Functional Zone Recognition Integrating Multisource Geographic
Data,
RS(13), No. 23, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Yu, Z.W.[Zhao-Wu],
Jing, Y.C.[Yong-Cai],
Yang, G.Y.[Gao-Yuan],
Sun, R.H.[Ran-Hao],
A New Urban Functional Zone-Based Climate Zoning System for Urban
Temperature Study,
RS(13), No. 2, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Xu, Z.H.[Zhi-Hao],
Li, J.B.[Jian-Bo],
Lv, Z.Q.[Zhi-Qiang],
Dong, C.H.[Chuan-Hao],
Fu, L.P.[Li-Ping],
A classification method for urban functional regions based on the
transfer rate of empty cars,
IET-ITS(16), No. 2, 2022, pp. 133-147.
DOI Link
2201
BibRef
Li, Q.[Qian],
Cui, C.[Caihui],
Liu, F.[Feng],
Wu, Q.[Qirui],
Run, Y.[Yadi],
Han, Z.G.[Zhi-Gang],
Multidimensional Urban Vitality on Streets: Spatial Patterns and
Influence Factor Identification Using Multisource Urban Data,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Pan, T.[Tao],
Kuang, W.H.[Wen-Hui],
Pan, R.[Ruoyi],
Niu, Z.G.[Zhen-Guo],
Dou, Y.[Yinyin],
Hierarchical Urban Land Mappings and Their Distribution with Physical
Medium Environments Using Time Series of Land Resource Images in
Beijing, China (1981-2021),
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Sun, B.[Bo],
Zhang, Y.[Yang],
Zhou, Q.M.[Qi-Ming],
Zhang, X.C.[Xin-Chang],
Effectiveness of Semi-Supervised Learning and Multi-Source Data in
Detailed Urban Landuse Mapping with a Few Labeled Samples,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Song, Z.L.[Zheng-Lin],
Wang, H.[Hong],
Qin, S.H.[Shu-Hong],
Li, X.[Xiuneng],
Yang, Y.[Yi],
Wang, Y.C.[Yi-Cong],
Meng, P.Y.[Peng-Yu],
Building-Level Urban Functional Area Identification Based on
Multi-Attribute Aggregated Data from Cell Phones: A Method Combining
Multidimensional Time Series with a SOM Neural Network,
IJGI(11), No. 2, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Yu, J.[Jie],
Zeng, P.[Peng],
Yu, Y.[Yaying],
Yu, H.W.[Hong-Wei],
Huang, L.[Liang],
Zhou, D.B.[Dong-Bo],
A Combined Convolutional Neural Network for Urban Land-Use
Classification with GIS Data,
RS(14), No. 5, 2022, pp. xx-yy.
DOI Link
2203
BibRef
Rahman, M.M.[Md. Mostafizur],
Szabó, G.[György],
A Novel Composite Index to Measure Environmental Benefits in Urban
Land Use Optimization Problems,
IJGI(11), No. 4, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Saboori, M.[Mojtaba],
Homayouni, S.[Saeid],
Shah-Hosseini, R.[Reza],
Zhang, Y.[Ying],
Optimum Feature and Classifier Selection for Accurate Urban Land
Use/Cover Mapping from Very High Resolution Satellite Imagery,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Shao, S.W.[Shi-Wei],
Yu, M.T.[Meng-Ting],
Huang, Y.M.[Yi-Min],
Wang, Y.H.[Yi-Heng],
Tian, J.[Jing],
Ren, C.[Chang],
Towards a Core Set of Landscape Metrics of Urban Land Use in Wuhan,
China,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Pavlovic, M.[Marko],
Ilic, S.[Slobodan],
Antonic, N.[Nenad],
Culibrk, D.[Dubravko],
Monitoring the Impact of Large Transport Infrastructure on Land Use
and Environment Using Deep Learning and Satellite Imagery,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ye, F.H.[Fang-Hong],
Ai, T.H.[Ting-Hua],
Wang, J.M.[Jia-Ming],
Yao, Y.[Yuan],
Zhou, Z.[Zheng],
A Method for Classifying Complex Features in Urban Areas Using Video
Satellite Remote Sensing Data,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Xing, Z.L.[Zhao-Lian],
Guo, W.M.[Wei-Min],
A New Urban Space Analysis Method Based on Space Syntax and
Geographic Information System Using Multisource Data,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Ma, L.[Lei],
Seipel, S.[Stefan],
Brandt, S.A.[Sven Anders],
Ma, D.[Ding],
A New Graph-Based Fractality Index to Characterize Complexity of
Urban Form,
IJGI(11), No. 5, 2022, pp. xx-yy.
DOI Link
2206
BibRef
Xu, X.J.[Xiu-Juan],
Bai, Y.L.[Yu-Lin],
Liu, Y.[Yu],
Zhao, X.W.[Xiao-Wei],
Sun, Y.Z.[Yu-Zhi],
MM-UrbanFAC: Urban Functional Area Classification Model Based on
Multimodal Machine Learning,
ITS(23), No. 7, July 2022, pp. 8488-8497.
IEEE DOI
2207
Data models, Predictive models, Machine learning, Boosting,
Analytical models, Urban areas, Remote sensing,
feature engineering
BibRef
Pastorino, M.[Martina],
Gallo, F.[Federico],
di Febbraro, A.[Angela],
Moser, G.[Gabriele],
Sacco, N.[Nicola],
Serpico, S.B.[Sebastiano B.],
Multimodal Fusion of Mobility Demand Data and Remote Sensing Imagery
for Urban Land-Use and Land-Cover Mapping,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Tao, Y.M.[Yi-Ming],
Ye, R.[Ruhai],
Analysis of the Spatio-Temporal Characteristics of Nanjing's
Urban Expansion and Its Driving Mechanisms,
IJGI(11), No. 7, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Ye, Y.X.[Yu-Xuan],
Wang, Y.F.[Ya-Fei],
Liao, J.F.[Jin-Feng],
Chen, J.Z.[Jie-Zhi],
Zou, Y.F.[Yang-Fan],
Liu, Y.[Yuan],
Feng, C.Y.[Chun-Ye],
Spatiotemporal Pattern Analysis of Land Use Functions in Contiguous
Coastal Cities Based on Long-Term Time Series Remote Sensing Data: A
Case Study of Bohai Sea Region, China,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Lan, T.[Tian],
Cheng, H.[Hao],
Wang, Y.[Yi],
Wen, B.H.[Bi-Han],
Site Selection via Learning Graph Convolutional Neural Networks:
A Case Study of Singapore,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhao, W.F.[Wu-Fan],
Li, M.M.[Meng-Meng],
Wu, C.[Cai],
Zhou, W.[Wen],
Chu, G.Z.[Guo-Zhong],
Identifying Urban Functional Regions from High-Resolution Satellite
Images Using a Context-Aware Segmentation Network,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Deng, Y.[Yue],
He, R.X.[Ri-Xing],
Refined Urban Functional Zone Mapping by Integrating Open-Source Data,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Deng, Z.C.[Zhi-Cheng],
You, X.T.[Xiang-Ting],
Shi, Z.Y.[Zhao-Yang],
Gao, H.[Hong],
Hu, X.[Xu],
Yu, Z.Y.[Zhao-Yuan],
Yuan, L.W.[Lin-Wang],
Identification of Urban Functional Zones Based on the Spatial
Specificity of Online Car-Hailing Traffic Cycle,
IJGI(11), No. 8, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Yan, Y.W.[Ying-Wei],
Deng, Y.B.[Ying-Bin],
Yang, J.[Ji],
Li, Y.[Yong],
Ye, X.Y.[Xin-Yue],
Xu, J.H.[Jian-Hui],
Ye, Y.Y.[Yu-Yao],
Exploring the Applicability of Self-Organizing Maps for Ecosystem
Service Zoning of the Guangdong-Hong Kong-Macao Greater Bay Area,
IJGI(11), No. 9, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Huang, C.[Chong],
Xiao, C.L.[Chao-Liang],
Rong, L.S.[Li-Shan],
Integrating Point-of-Interest Density and Spatial Heterogeneity to
Identify Urban Functional Areas,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link
2209
BibRef
Fang, F.[Fang],
Zeng, L.[Linyun],
Li, S.[Shengwen],
Zheng, D.[Daoyuan],
Zhang, J.[Jiahui],
Liu, Y.Y.[Yuan-Yuan],
Wan, B.[Bo],
Spatial context-aware method for urban land use classification using
street view images,
PandRS(192), 2022, pp. 1-12.
Elsevier DOI
2209
Land use classification, Street view image, Spatial-context graph,
Deep learning
BibRef
Zhang, N.H.[Neng-Huan],
Wang, Y.B.[Yong-Bin],
Wang, X.G.[Xiao-Guang],
Yu, P.[Peng],
A Multi-Modal Fusion Network Guided by Feature Co-Occurrence for Urban
Region Function Recognition,
IEICE(E105-D), No. 10, October 2022, pp. 1769-1779.
WWW Link.
2210
BibRef
Nie, W.Y.[Wen-Yu],
Fan, X.W.[Xi-Wei],
Nie, G.Z.[Gao-Zhong],
Li, H.Y.[Hua-Yue],
Xia, C.X.[Chao-Xu],
Building Function Type Identification Using Mobile Signaling Data
Based on a Machine Learning Method,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Chen, Y.[Yue],
Qian, H.Z.[Hai-Zhong],
Wang, X.[Xiao],
Wang, D.[Di],
Han, L.J.[Li-Jian],
A GloVe Model for Urban Functional Area Identification Considering
Nonlinear Spatial Relationships between Points of Interest,
IJGI(11), No. 10, 2022, pp. xx-yy.
DOI Link
2211
BibRef
Li, T.[Tong],
Xiu, C.L.[Chun-Liang],
Yu, H.S.[Hui-Sheng],
Urban Human-Land Spatial Mismatch Analysis from a Source-Sink
Perspective with ICT Support,
IJGI(11), No. 11, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Xiao, T.[Tong],
Wan, Y.L.[Yi-Liang],
Jin, R.[Rui],
Qin, J.X.[Jian-Xin],
Wu, T.[Tao],
Integrating Gaussian Mixture Dual-Clustering and DBSCAN for Exploring
Heterogeneous Characteristics of Urban Spatial Agglomeration Areas,
RS(14), No. 22, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Wang, X.[Xi],
Chen, B.[Bin],
Li, X.C.[Xue-Cao],
Zhang, Y.X.[Yu-Xin],
Ling, X.Y.[Xian-Yao],
Wang, J.[Jie],
Li, W.M.[Wei-Min],
Wen, W.[Wu],
Gong, P.[Peng],
Grid-Based Essential Urban Land Use Classification: A Data and Model
Driven Mapping Framework in Xiamen City,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Deng, R.[Rui],
Guan, Y.N.[Yan-Ning],
Cai, D.[Danlu],
Yang, T.[Tao],
Fraedrich, K.[Klaus],
Zhang, C.Y.[Chun-Yan],
Tang, J.K.[Jia-Kui],
Liao, Z.W.[Zhou-Wei],
Wei, Z.S.[Zhi-Shou],
Guo, S.[Shan],
Supervised versus Semi-Supervised Urban Functional Area Prediction:
Uncertainty, Robustness and Sensitivity,
RS(15), No. 2, 2023, pp. xx-yy.
DOI Link
2301
BibRef
Wang, J.F.[Ji-Fei],
Feng, C.C.[Chen-Chieh],
Guo, Z.[Zhou],
A Novel Graph-Based Framework for Classifying Urban Functional Zones
with Multisource Data and Human Mobility Patterns,
RS(15), No. 3, 2023, pp. xx-yy.
DOI Link
2302
BibRef
Chang, S.Z.[Shou-Zhi],
Zhao, J.[Jian],
Jia, M.M.[Ming-Ming],
Mao, D.H.[De-Hua],
Wang, Z.M.[Zong-Ming],
Hou, B.[Boyu],
Land Use Change and Hotspot Identification in Harbin-Changchun Urban
Agglomeration in China from 1990 to 2020,
IJGI(12), No. 2, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Shi, Y.[Yishao],
Zheng, J.W.[Jian-Wen],
Pei, X.W.[Xiao-Wen],
Measurement Method and Influencing Mechanism of Urban Subdistrict
Vitality in Shanghai Based on Multisource Data,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Ray, R.[Ratnadeep],
Das, A.[Abhinandan],
Hasan, M.S.U.[Mohd Sayeed Ul],
Aldrees, A.[Ali],
Islam, S.[Saiful],
Khan, M.A.[Mohammad Amir],
Lama, G.F.C.[Giuseppe Francesco Cesare],
Quantitative Analysis of Land Use and Land Cover Dynamics using
Geoinformatics Techniques: A Case Study on Kolkata Metropolitan
Development Authority (KMDA) in West Bengal, India,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Zhao, L.[Lin],
Yang, C.H.[Chuan-Hao],
Zhao, Y.C.[Yu-Chen],
Wang, Q.[Qian],
Zhang, Q.P.[Qi-Peng],
Spatial Correlations of Land Use Carbon Emissions in Shandong
Peninsula Urban Agglomeration: A Perspective from City Level Using
Remote Sensing Data,
RS(15), No. 6, 2023, pp. 1488.
DOI Link
2304
BibRef
Zhang, Y.[Yan],
Liu, P.Y.[Peng-Yuan],
Biljecki, F.[Filip],
Knowledge and topology: A two layer spatially dependent graph neural
networks to identify urban functions with time-series street view
image,
PandRS(198), 2023, pp. 153-168.
Elsevier DOI
2304
GeoAI, Natural language processing, GeoKG, Pretrained model,
Knowledge graph, Multi-modal
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Change Detection, Urban Area Land Cover, Temporal Analysis .