Forero, M.G.[Manuel G.],
Sroubek, F.[Filip],
Cristóbal, G.[Gabriel],
Identification of tuberculosis bacteria based on shape and color,
RealTimeImg(10), No. 4, August 2004, pp. 251-262.
Elsevier DOI
0410
BibRef
Xu, T.[Tao],
Cheng, I.[Irene],
Long, R.[Richard],
Mandal, M.[Mrinal],
Novel coarse-to-fine dual scale technique for tuberculosis cavity
detection in chest radiographs,
JIVP(2012), No. 1, 2013, pp. 3.
DOI Link
1302
BibRef
Jaeger, S.,
Karargyris, A.,
Candemir, S.,
Folio, L.,
Siegelman, J.,
Callaghan, F.,
Xue, Z.Y.[Zhi-Yun],
Palaniappan, K.,
Singh, R.K.,
Antani, S.,
Thoma, G.,
Wang, Y.X.[Yi-Xiang],
Lu, P.X.[Pu-Xuan],
McDonald, C.J.,
Automatic Tuberculosis Screening Using Chest Radiographs,
MedImg(33), No. 2, February 2014, pp. 233-245.
IEEE DOI
1403
diagnostic radiography
BibRef
Ayas, S.[Selen],
Ekinci, M.[Murat],
Random forest-based tuberculosis bacteria classification in images of
ZN-stained sputum smear samples,
SIViP(8), No. S1, December 2014, pp. 49-61.
WWW Link.
1411
BibRef
Melendez, J.,
van Ginneken, B.,
Maduskar, P.,
Philipsen, R.H.H.M.,
Reither, K.,
Breuninger, M.,
Adetifa, I.M.O.,
Maane, R.,
Ayles, H.,
Sanchez, C.I.,
A Novel Multiple-Instance Learning-Based Approach to Computer-Aided
Detection of Tuberculosis on Chest X-Rays,
MedImg(34), No. 1, January 2015, pp. 179-192.
IEEE DOI
1502
diagnostic radiography
BibRef
Melendez, J.,
van Ginneken, B.,
Maduskar, P.,
Philipsen, R.H.H.M.,
Ayles, H.,
Sánchez, C.I.,
On Combining Multiple-Instance Learning and Active Learning for
Computer-Aided Detection of Tuberculosis,
MedImg(35), No. 4, April 2016, pp. 1013-1024.
IEEE DOI
1604
diagnostic radiography
BibRef
Hogeweg, L.,
Sanchez, C.I.,
Maduskar, P.,
Philipsen, R.,
Story, A.,
Dawson, R.,
Theron, G.,
Dheda, K.,
Peters-Bax, L.,
van Ginneken, B.,
Automatic Detection of Tuberculosis in Chest Radiographs Using a
Combination of Textural, Focal, and Shape Abnormality Analysis,
MedImg(34), No. 12, December 2015, pp. 2429-2442.
IEEE DOI
1601
diagnostic radiography
BibRef
Xu, C.[Chao],
Zhou, D.X.[Dong-Xiang],
Guan, T.[Tao],
Zhai, Y.P.[Yong-Ping],
Liu, Y.H.[Yun-Hui],
Automatic Recognition of Mycobacterium Tuberculosis Based on Active
Shape Model,
IEICE(E99-D), No. 4, April 2016, pp. 1162-1171.
WWW Link.
1604
BibRef
Santosh, K.C.,
Antani, S.,
Automated Chest X-Ray Screening: Can Lung Region Symmetry Help Detect
Pulmonary Abnormalities?,
MedImg(37), No. 5, May 2018, pp. 1168-1177.
IEEE DOI
1805
Feature extraction, Histograms, Image edge detection, Lungs, Shape,
Sociology, Automation, chest X-rays, lung region symmetry,
tuberculosis
BibRef
Chithra, R.S.,
Jagatheeswari, P.,
Fractional crow search-based support vector neural network for patient
classification and severity analysis of tuberculosis,
IET-IPR(13), No. 1, January 2019, pp. 108-117.
DOI Link
1812
BibRef
Mithra, K.S.,
Emmanuel, W.R.S.[W. R. Sam],
Automated identification of mycobacterium bacillus from sputum images
for tuberculosis diagnosis,
SIViP(13), No. 8, November 2019, pp. 1585-1592.
WWW Link.
1911
BibRef
Chithra, R.S.,
Jagatheeswari, P.,
Severity detection and infection level identification of tuberculosis
using deep learning,
IJIST(30), No. 4, 2020, pp. 994-1011.
DOI Link
2011
adaptive thresholding, deep CNN, deep learning, segmentation,
severity analysis, TB
BibRef
Pavani, P.G.[P. Geetha],
Biswal, B.[Birendra],
Sairam, M.V.S.,
Subrahmanyam, N.B.[N. Bala],
A semantic contour based segmentation of lungs from chest x-rays for
the classification of tuberculosis using Naïve Bayes classifier,
IJIST(31), No. 4, 2021, pp. 2189-2203.
DOI Link
2112
Chan-Vese active contour, Naïve Bayes classifier (NBC),
posterior anterior chest radiograph (PACR), tuberculosis (TB)
BibRef
Zaidi, S.Z.Y.[S. Zainab Yousuf],
Akram, M.U.[M. Usman],
Jameel, A.[Amina],
Alghamdi, N.S.[Norah Saleh],
A deep learning approach for the classification of TB from NIH CXR
dataset,
IET-IPR(16), No. 3, 2022, pp. 787-796.
DOI Link
2202
BibRef
Morís, D.I.[Daniel I.],
de Moura, J.[Joaquim],
Novo, J.[Jorge],
Ortega, M.[Marcos],
Unsupervised contrastive unpaired image generation approach for
improving tuberculosis screening using chest X-ray images,
PRL(164), 2022, pp. 60-66.
Elsevier DOI
2212
Tuberculosis, Chest X-ray, Deep learning, Biomedical imaging,
Contrastive unpaired translation, Data scarcity
BibRef
Liu, Y.[Yun],
Wu, Y.H.[Yu-Huan],
Zhang, S.C.[Shi-Chen],
Liu, L.[Li],
Wu, M.[Min],
Cheng, M.M.[Ming-Ming],
Revisiting Computer-Aided Tuberculosis Diagnosis,
PAMI(46), No. 4, April 2024, pp. 2316-2332.
IEEE DOI
2403
Tuberculosis, Transformers, Image classification, X-ray imaging,
Medical diagnostic imaging, Deep learning, Feature extraction,
symmetric positional encoding
BibRef
Alqahtani, A.[Ali],
Al-Haija, Q.A.[Qasem Abu],
Alsulami, A.A.[Abdulaziz A.],
Alturki, B.[Badraddin],
Alqahtani, N.[Nayef],
Alsini, R.[Raed],
Optimizing chest tuberculosis image classification with oversampling
and transfer learning,
IET-IPR(18), No. 5, 2024, pp. 1109-1118.
DOI Link
2404
convolutional neural nets, data analysis, decision making,
medical image processing
BibRef
Shome, N.[Nirupam],
Kashyap, R.[Richik],
Laskar, R.H.[Rabul Hussain],
Detection of tuberculosis using customized MobileNet and transfer
learning from chest X-ray image,
IVC(147), 2024, pp. 105063.
Elsevier DOI
2406
Tuberculosis detection, Deep-learning, Transfer learning, CXR images
BibRef
Zhao, X.J.[Xiao-Jiang],
Ding, Y.[Yun],
Zhang, B.[Bowen],
Wei, H.[Huaye],
Li, T.[Ting],
Li, X.[Xin],
Multiscale Three-Dimensional Features and Spatial Feature Evaluation
of Human Pulmonary Tuberculosis,
IJIST(35), No. 3, 2025, pp. e70069.
DOI Link
2504
fMOST, imaging, pathology, pulmonary tuberculosis,
three-dimensional reconstruction
BibRef
Lewis, A.[Ashia],
Mahmoodi, E.[Evanjelin],
Zhou, Y.Y.[Yu-Yue],
Coffee, M.[Megan],
Sizikova, E.[Elena],
Improving Tuberculosis (TB) Prediction using Synthetically Generated
Computed Tomography (CT) Images,
CVAMD21(3258-3266)
IEEE DOI
2112
Microorganisms, Image analysis,
Infectious diseases, Computed tomography, Pulmonary diseases
BibRef
Nkouanga, H.Y.[Hermann Y.],
Vajda, S.[Szilárd],
Automatic Tuberculosis Detection Using Chest X-ray Analysis With
Position Enhanced Structural Information,
ICPR21(6439-6446)
IEEE DOI
2105
Training, Laplace equations, Sociology, Semantics, Lung, Africa,
Feature extraction
BibRef
Das, D.[Dipayan],
Santosh, K.C.,
Pal, U.[Umapada],
Inception-based Deep Learning Architecture for Tuberculosis Screening
using Chest X-rays,
ICPR21(3612-3619)
IEEE DOI
2105
Deep learning, Solid modeling, Analytical models,
Design automation, Computational modeling, Face recognition,
CNN
BibRef
Oloko-Oba, M.[Mustapha],
Viriri, S.[Serestina],
Pre-trained Convolutional Neural Network for the Diagnosis of
Tuberculosis,
ISVC20(II:558-569).
Springer DOI
2103
BibRef
Gao, X.,
Comley, R.,
Khan, M.H.M.,
An Enhanced Deep Learning Architecture for Classification of
Tuberculosis Types From CT Lung Images,
ICIP20(2486-2490)
IEEE DOI
2011
Software, Indexes, Diseases, deep learning,
Tuberculosis classification, CT lung images, 3D image analysis
BibRef
Oloko-Oba, M.[Mustapha],
Viriri, S.[Serestina],
Tuberculosis Abnormality Detection in Chest X-rays: A Deep Learning
Approach,
ICCVG20(121-132).
Springer DOI
2009
BibRef
Oloko-Oba, M.[Mustapha],
Viriri, S.[Serestina],
Diagnosing Tuberculosis Using Deep Convolutional Neural Network,
ICISP20(151-161).
Springer DOI
2009
BibRef
Liu, Y.,
Wu, Y.,
Ban, Y.,
Wang, H.,
Cheng, M.,
Rethinking Computer-Aided Tuberculosis Diagnosis,
CVPR20(2643-2652)
IEEE DOI
2008
X-ray imaging, Feature extraction, Detectors, Machine learning, Lung,
Standards, Training
BibRef
Seyedalizadeh, N.,
Alesheikh, A.A.,
Ahmadkhani, M.,
Spatio-statistical Modeling of Human Brucellosis Using Environmental
Parameters: a Case Study of Northern Iran,
SMPR19(969-973).
DOI Link
1912
BibRef
El-Melegy, M.[Moumen],
Mohamed, D.[Doaa],
ElMelegy, T.[Tarek],
Automatic Detection of Tuberculosis Bacilli from Microscopic Sputum
Smear Images Using Faster R-CNN, Transfer Learning and Augmentation,
IbPRIA19(I:270-278).
Springer DOI
1910
BibRef
Liu, C.,
Cao, Y.,
Alcantara, M.,
Liu, B.,
Brunette, M.,
Peinado, J.,
Curioso, W.,
TX-CNN: Detecting tuberculosis in chest X-ray images using
convolutional neural network,
ICIP17(2314-2318)
IEEE DOI
1803
Computational modeling, Convolutional neural networks,
Machine learning, Medical diagnostic imaging, Training,
tuberculosis diagnosis
BibRef
Sharma, U.[Utkarsh],
Lall, B.[Brejesh],
Computer Aided Diagnosis of Pleural Effusion in Tuberculosis Chest
Radiographs,
CIAP17(I:617-625).
Springer DOI
1711
BibRef
Makkapati, V.V.[Vishnu V.],
Agrawal, R.[Ravindra],
Acharya, R.[Raviraja],
Segmentation and classification of tuberculosis bacilli from
ZN-stained sputum smear images,
CASE09(217-220).
WWW Link.
0908
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Ribs, Chest X-Rays .