DOTA: A Large-Scale Benchmark and Challenges for Object Detection in Aerial Images,
Online2021
WWW Link.
Dataset, Aerial Objects.
2106
2806 aerial images obtained from different sensors and platforms,
including 15 classification categories
(vehicle, track, storange tanks, sports fields, etc.)
BibRef
TGRS-HRRSD-Dataset: High Resolution Remote Sensing Detection (HRRSD),
Online2017
WWW Link.
Dataset, Aerial Objects.
2106
21,761 images. in 13 categories.
See also Hierarchical and Robust Convolutional Neural Network for Very High-Resolution Remote Sensing Object Detection.
BibRef
Benteftifa, M.H.[M. Hafed],
Kurz, L.[Ludwik],
Two-Dimensional Object Detection in Correlated Noise,
PR(24), No. 8, 1991, pp. 755-773.
Elsevier DOI
BibRef
9100
Diab, S.L.,
Karim, M.A.,
Iftekharuddin, K.M.,
Multiobject Detection of Targets with Fine Details, Scale and
Translation Variations,
OptEng(37), No. 3, March 1998, pp. 876-883.
9804
BibRef
Strickland, R.N.,
Zoucha, D.M.,
Object Detection Using Subband Decomposition,
OptEng(37), No. 1, January 1998, pp. 320-330.
9802
BibRef
Sahin, A.,
Miller, E.L.,
Object detection using high resolution near-field array processing,
GeoRS(39), No. 1, January 2001, pp. 136-141.
IEEE Top Reference.
0104
BibRef
Miller, E.L.,
Karl, W.C.,
Detection and localization of obscured objects from near-field sensor
array data: physical models and statistical processing,
ICIP98(III: 370-374).
IEEE DOI
9810
BibRef
Kerekes, J.P.,
Baum, J.E.,
Spectral imaging system analytical model for subpixel object detection,
GeoRS(40), No. 5, May 2002, pp. 1088-1101.
IEEE Top Reference.
0206
BibRef
Kerekes, J.P.,
Baum, J.E.,
Full-Spectrum Spectral Imaging System Analytical Model,
GeoRS(43), No. 3, March 2005, pp. 571-580.
IEEE Abstract.
0501
BibRef
Stefanou, M.S.,
Kerekes, J.P.,
A Method for Assessing Spectral Image Utility,
GeoRS(47), No. 6, June 2009, pp. 1698-1706.
IEEE DOI
0905
BibRef
Stefanou, M.S.,
Kerekes, J.P.,
Image-Derived Prediction of Spectral Image Utility for Target Detection
Applications,
GeoRS(48), No. 4, April 2010, pp. 1827-1833.
IEEE DOI
1003
BibRef
Kerekes, J.P.[John P.],
Hyperspectral remote sensing subpixel object detection performance,
AIPR11(1-4).
IEEE DOI
1204
BibRef
Cheng, G.[Gong],
Han, J.W.[Jun-Wei],
Guo, L.[Lei],
Qian, X.L.[Xiao-Liang],
Zhou, P.C.[Pei-Cheng],
Yao, X.W.[Xi-Wen],
Hu, X.T.[Xin-Tao],
Object detection in remote sensing imagery using a discriminatively
trained mixture model,
PandRS(85), No. 1, 2013, pp. 32-43.
Elsevier DOI
1310
Object detection
BibRef
Cheng, G.[Gong],
Han, J.W.[Jun-Wei],
Zhou, P.C.[Pei-Cheng],
Guo, L.[Lei],
Multi-class geospatial object detection and geographic image
classification based on collection of part detectors,
PandRS(98), No. 1, 2014, pp. 119-132.
Elsevier DOI
1411
Geospatial object detection. Find specific objects or spatial pattern.
For high resolution remote sensing applications.
BibRef
Cheng, G.[Gong],
Han, J.W.[Jun-Wei],
Guo, L.[Lei],
Liu, T.M.[Tian-Ming],
Learning coarse-to-fine sparselets for efficient object detection and
scene classification,
CVPR15(1173-1181)
IEEE DOI
1510
BibRef
Han, J.W.[Jun-Wei],
Zhou, P.C.[Pei-Cheng],
Zhang, D.W.[Ding-Wen],
Cheng, G.[Gong],
Guo, L.[Lei],
Liu, Z.B.[Zhen-Bao],
Bu, S.H.[Shu-Hui],
Wu, J.[Jun],
Efficient, simultaneous detection of multi-class geospatial targets
based on visual saliency modeling and discriminative learning of
sparse coding,
PandRS(89), No. 1, 2014, pp. 37-48.
Elsevier DOI
1403
Geospatial target detection
BibRef
Qiu, H.Q.[He-Qian],
Li, H.L.[Hong-Liang],
Wu, Q.B.[Qing-Bo],
Meng, F.M.[Fan-Man],
Ngan, K.N.[King Ngi],
Shi, H.C.[Heng-Can],
A2RMNet: Adaptively Aspect Ratio Multi-Scale Network for Object
Detection in Remote Sensing Images,
RS(11), No. 13, 2019, pp. xx-yy.
DOI Link
1907
BibRef
Sheng, Y.L.[Yun-Long],
Sahli, S.[Samir],
Ouyang, Y.[Yueh],
Lavigne, D.[Daniel],
Object detection:
From optical correlator to intelligent recognition surveillance system,
SPIE(Newsroom), October 21, 2013.
DOI Link
1310
Survey, Object Detection. Component- and feature-based approaches enable object detection in
aerial imagery.
BibRef
Li, G.S.[Gang-Sheng],
Zeng, L.P.[Li-Ping],
Zhang, L.[Ling],
Wu, Q.M.J.[Q.M. Jonathan],
State Identification of Duffing Oscillator Based on Extreme Learning
Machine,
SPLetters(25), No. 1, January 2018, pp. 25-29.
IEEE DOI
1801
Signals with very low signal-to-noise ratio.
chaos, feature extraction, learning (artificial intelligence),
object detection, oscillators, signal classification,
state identification
BibRef
Pang, J.M.[Jiang-Miao],
Li, C.[Cong],
Shi, J.P.[Jian-Ping],
Xu, Z.H.[Zhi-Hai],
Feng, H.J.[Hua-Jun],
RR^2-CNN:
Fast Tiny Object Detection in Large-Scale Remote Sensing Images,
GeoRS(57), No. 8, August 2019, pp. 5512-5524.
IEEE DOI
1908
Remote-sensing Region-based CNN.
convolutional neural nets, feature extraction,
geophysical image processing, image classification,
remote sensing region-based convolutional neural network (Rē-CNN)
BibRef
Zhang, Y.L.[Yuan-Lin],
Yuan, Y.[Yuan],
Feng, Y.C.[Ya-Chuang],
Lu, X.Q.[Xiao-Qiang],
Hierarchical and Robust Convolutional Neural Network for Very
High-Resolution Remote Sensing Object Detection,
GeoRS(57), No. 8, August 2019, pp. 5535-5548.
IEEE DOI
1908
convolutional neural nets, feature extraction,
learning (artificial intelligence), object detection,
rotation and scaling robust enhancement (RSRE)
See also TGRS-HRRSD-Dataset: High Resolution Remote Sensing Detection (HRRSD).
BibRef
Li, L.[Lin],
Zhang, S.B.[Sheng-Bing],
Wu, J.[Juan],
Efficient Object Detection Framework and Hardware Architecture for
Remote Sensing Images,
RS(11), No. 20, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Zhang, G.J.[Gong-Jie],
Lu, S.J.[Shi-Jian],
Zhang, W.[Wei],
CAD-Net: A Context-Aware Detection Network for Objects in Remote
Sensing Imagery,
GeoRS(57), No. 12, December 2019, pp. 10015-10024.
IEEE DOI
1912
Remote sensing, Object detection, Optical sensors, Optical imaging,
Feature extraction, Detectors, Visualization,
optical remote sensing images
BibRef
Geng, X.R.[Xiu-Rui],
Ji, L.Y.[Lu-Yan],
Yang, W.T.[Wei-Tun],
The Analytical Solution of the Clever Eye (CE) Method,
GeoRS(59), No. 1, January 2021, pp. 478-487.
IEEE DOI
2012
Object detection, Optimization, Mathematical model, Detectors,
Covariance matrices, Minimization, Correlation, Clever eye (CE),
target detection
BibRef
Sun, X.[Xian],
Liu, Y.F.[Ying-Fei],
Yan, Z.Y.[Zhi-Yuan],
Wang, P.J.[Pei-Jin],
Diao, W.H.[Wen-Hui],
Fu, K.[Kun],
SRAF-Net: Shape Robust Anchor-Free Network for Garbage Dumps in
Remote Sensing Imagery,
GeoRS(59), No. 7, July 2021, pp. 6154-6168.
IEEE DOI
2106
Convolution, Shape, Feature extraction, Remote sensing,
Object detection, Detectors, Sun, Anchor free,
remote sensing imagery
BibRef
Wang, Y.[Yu],
Jia, Y.N.[Yan-Nan],
Gu, L.[Lize],
EFM-Net: Feature Extraction and Filtration with Mask Improvement
Network for Object Detection in Remote Sensing Images,
RS(13), No. 20, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Chen, Y.[Ying],
Liu, Q.[Qi],
Wang, T.[Teng],
Wang, B.[Bin],
Meng, X.L.[Xiao-Liang],
Rotation-Invariant and Relation-Aware Cross-Domain Adaptation Object
Detection Network for Optical Remote Sensing Images,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Han, W.[Wei],
Fan, R.[Runyu],
Wang, L.[Lizhe],
Feng, R.[Ruyi],
Li, F.P.[Feng-Peng],
Deng, Z.[Ze],
Chen, X.D.[Xiao-Dao],
Improving Training Instance Quality in Aerial Image Object Detection
With a Sampling-Balance-Based Multistage Network,
GeoRS(59), No. 12, December 2021, pp. 10575-10589.
IEEE DOI
2112
Training, Detectors, Object detection, Remote sensing, Proposals,
Geology, Feature extraction, High-quality example mining,
remote sensing
BibRef
Zhang, L.Y.[Lu-Yang],
Wang, H.T.[Hai-Tao],
Wang, L.F.[Ling-Feng],
Pan, C.H.[Chun-Hong],
Liu, Q.[Qiang],
Wang, X.Y.[Xin-Yao],
Constraint Loss for Rotated Object Detection in Remote Sensing Images,
RS(13), No. 21, 2021, pp. xx-yy.
DOI Link
2112
BibRef
Huang, Z.C.[Zhan-Chao],
Li, W.[Wei],
Xia, X.G.[Xiang-Gen],
Wu, X.[Xin],
Cai, Z.Q.[Zhao-Quan],
Tao, R.[Ran],
A Novel Nonlocal-Aware Pyramid and Multiscale Multitask Refinement
Detector for Object Detection in Remote Sensing Images,
GeoRS(60), 2022, pp. 1-20.
IEEE DOI
2112
Feature extraction, Detectors, Task analysis, Head, Visualization,
Remote sensing, Neural networks, Attention, multiscale, multitask,
remote sensing (RS) images
BibRef
Ye, Y.X.[Yuan-Xin],
Ren, X.Y.[Xiao-Yue],
Zhu, B.[Bai],
Tang, T.F.[Teng-Feng],
Tan, X.[Xin],
Gui, Y.[Yang],
Yao, Q.[Qin],
An Adaptive Attention Fusion Mechanism Convolutional Network for
Object Detection in Remote Sensing Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Dong, X.H.[Xiao-Hu],
Qin, Y.[Yao],
Gao, Y.H.[Ying-Hui],
Fu, R.G.[Rui-Gang],
Liu, S.L.[Song-Lin],
Ye, Y.X.[Yuan-Xin],
Attention-Based Multi-Level Feature Fusion for Object Detection in
Remote Sensing Images,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zhang, K.[Kaihua],
Shen, H.[Haikuo],
Multi-Stage Feature Enhancement Pyramid Network for Detecting Objects
in Optical Remote Sensing Images,
RS(14), No. 3, 2022, pp. xx-yy.
DOI Link
2202
BibRef
Liu, Z.M.[Zhi-Ming],
Zhang, X.F.[Xue-Fei],
Liu, C.Y.[Chong-Yang],
Wang, H.[Hao],
Sun, C.[Chao],
Li, B.[Bin],
Huang, P.[Pu],
Li, Q.J.[Qing-Jun],
Liu, Y.[Yu],
Kuang, H.P.[Hai-Peng],
Xiu, J.H.[Ji-Hong],
RelationRS: Relationship Representation Network for Object Detection
in Aerial Images,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Wu, B.L.[Bing-Long],
Shen, Y.[Yuan],
Guo, S.X.[Shan-Xin],
Chen, J.S.[Jin-Song],
Sun, L.[Luyi],
Li, H.Z.[Hong-Zhong],
Ao, Y.[Yong],
High Quality Object Detection for Multiresolution Remote Sensing
Imagery Using Cascaded Multi-Stage Detectors,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Kawauchi, H.[Hiroki],
Fuse, T.[Takashi],
SHAP-Based Interpretable Object Detection Method for Satellite
Imagery,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Fang, Q.Y.[Qing-Yun],
Wang, Z.K.[Zhao-Kui],
Cross-modality attentive feature fusion for object detection in
multispectral remote sensing imagery,
PR(130), 2022, pp. 108786.
Elsevier DOI
2206
Cross-modality, Attention, Feature fusion, Object detection,
Multispectral remote sensing imagery
BibRef
Shen, Y.Y.[Yan-Yun],
Liu, D.[Di],
Zhang, F.Z.[Fei-Zhao],
Zhang, Q.L.[Qing-Ling],
Fast and accurate multi-class geospatial object detection with
large-size remote sensing imagery using CNN and Truncated NMS,
PandRS(191), 2022, pp. 235-249.
Elsevier DOI
2208
Partial objects at edge of tiles.
Multi-class geospatial object detection,
Convolutional neural network, Truncated NMS, Manhattan-Distance IOU
BibRef
Tian, S.[Shu],
Cao, L.[Lin],
Kang, L.H.[Li-Hong],
Xing, X.W.[Xiang-Wei],
Tian, J.[Jing],
Du, K.N.[Kang-Ning],
Sun, K.[Ke],
Fan, C.Z.[Chun-Zhuo],
Fu, Y.[Yuzhe],
Zhang, Y.[Ye],
A Novel Hybrid Attention-Driven Multistream Hierarchical Graph
Embedding Network for Remote Sensing Object Detection,
RS(14), No. 19, 2022, pp. xx-yy.
DOI Link
2210
BibRef
Li, Z.[Zheng],
Wang, Y.C.[Yong-Cheng],
Zhang, N.[Ning],
Zhang, Y.X.[Yu-Xi],
Zhao, Z.K.[Zhi-Kang],
Xu, D.D.[Dong-Dong],
Ben, G.L.[Guang-Li],
Gao, Y.X.[Yun-Xiao],
Deep Learning-Based Object Detection Techniques for Remote Sensing Images:
A Survey,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link
2206
Survey, Object Detection.
BibRef
Wang, J.Q.[Jia-Qi],
Gong, Z.H.[Zhi-Hui],
Liu, X.Y.[Xiang-Yun],
Guo, H.T.[Hai-Tao],
Yu, D.H.[Dong-Hang],
Ding, L.[Lei],
Object Detection Based on Adaptive Feature-Aware Method in Optical
Remote Sensing Images,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Zheng, K.L.[Kun-Long],
Dong, Y.F.[Yi-Fan],
Xu, W.[Wei],
Su, Y.[Yun],
Huang, P.P.[Ping-Ping],
A Method of Fusing Probability-Form Knowledge into Object Detection
in Remote Sensing Images,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link
2212
BibRef
Gui, S.X.[Sheng-Xi],
Song, S.[Shuang],
Qin, R.J.[Rong-Jun],
Tang, Y.[Yang],
Remote Sensing Object Detection in the Deep Learning Era: A Review,
RS(16), No. 2, 2024, pp. 327.
DOI Link
2402
BibRef
Jin, R.[Ren],
Jia, Z.K.[Zi-Kai],
Yin, X.Y.[Xing-Yu],
Niu, Y.[Yi],
Qi, Y.H.[Yu-Hua],
Domain Feature Decomposition for Efficient Object Detection in Aerial
Images,
RS(16), No. 9, 2024, pp. 1626.
DOI Link
2405
BibRef
Jin, R.[Ren],
Jia, Z.K.[Zi-Kai],
Chu, Z.C.[Zhao-Chen],
Efficient Aerial Image Object Detection with Imaging Condition
Decomposition,
ICIP23(620-624)
IEEE DOI
2312
BibRef
Chen, Q.[Qiang],
Yue, P.[Peng],
Xu, Y.J.[Ying-Jun],
Cao, S.S.[Shi-Song],
Zhou, L.[Lei],
Liu, Y.[Yang],
Luo, J.H.[Jian-Hui],
Feature-Selection-Based Unsupervised Transfer Learning for Change
Detection from VHR Optical Images,
RS(16), No. 18, 2024, pp. 3507.
DOI Link
2410
BibRef
Liu, Y.D.[Yun-Dong],
Dong, Y.[Yan],
Kang, H.N.[Hao-Nan],
Gao, G.S.[Guang-Shuai],
Li, C.L.[Chun-Lei],
Liu, Z.F.[Zhou-Feng],
A Key Feature-Enhanced Network for Remote Sensing Object Detection,
ICIP23(805-809)
IEEE DOI
2312
BibRef
Liu, Y.[Yanan],
Zhang, L.[Libao],
DSG-PL: ROI Extraction Based on Dual Saliency Guided Progressive
Learning for Weakly Labeled Remote Sensing Images,
ICIP23(2840-2844)
IEEE DOI
2312
BibRef
Kim, J.H.[Jong-Ha],
Baek, J.[Jinheon],
Hwang, S.J.[Sung Ju],
Object Detection in Aerial Images with Uncertainty-aware Graph Network,
OOLearn22(521-536).
Springer DOI
2304
BibRef
Messmer, M.[Martin],
Kiefer, B.[Benjamin],
Zell, A.[Andreas],
Gaining Scale Invariance in UAV Bird's Eye View Object Detection by
Adaptive Resizing,
ICPR22(3588-3594)
IEEE DOI
2212
Codes, Graphics processing units, Object detection, Detectors,
Multitasking, Real-time systems
BibRef
Deng, J.[Jieren],
Zhou, X.[Xin],
Tian, H.[Hao],
Pan, Z.H.[Zhi-Hong],
Aguiar, D.[Derek],
Smooth and Stepwise Self-Distillation for Object Detection,
ICIP23(2740-2744)
IEEE DOI
2312
BibRef
Zhu, T.Y.[Tian-Yu],
Ferenczi, B.[Bryce],
Purkait, P.[Pulak],
Drummond, T.[Tom],
Rezatofighi, H.[Hamid],
van den Hengel, A.[Anton],
Knowledge Combination to Learn Rotated Detection without Rotated
Annotation,
CVPR23(15518-15527)
IEEE DOI
2309
BibRef
Li, J.J.[Juan-Juan],
Hou, Z.Q.[Zhi-Qiang],
Sun, Y.[Ying],
Guo, H.[Hao],
Ma, S.[Sugang],
Object Detection Algorithm Based on Global Information Fusion,
ICIVC22(276-281)
IEEE DOI
2301
Location awareness, Aggregates, Object detection,
Feature extraction, Real-time systems, Data mining, FCOS, feature enhancement
BibRef
Han, J.M.[Jia-Ming],
Ding, J.[Jian],
Xue, N.[Nan],
Xia, G.S.[Gui-Song],
ReDet: A Rotation-equivariant Detector for Aerial Object Detection,
CVPR21(2785-2794)
IEEE DOI
2111
Codes, Computational modeling, Detectors,
Object detection, Predictive models, Feature extraction
BibRef
Martinson, E.[Eric],
Furlong, B.[Bridget],
Gillies, A.[Andy],
Training Rare Object Detection in Satellite Imagery with Synthetic
GAN Images,
LLID21(2763-2770)
IEEE DOI
2109
Training, Solid modeling, Analytical models,
Satellites, Generative adversarial networks
BibRef
Xu, N.[Nuo],
Huo, C.L.[Chun-Lei],
Guo, J.C.[Jia-Cheng],
Liu, Y.W.[Yi-Wei],
Wang, J.[Jian],
Pan, C.H.[Chun-Hong],
Adaptive Remote Sensing Image Attribute Learning for Active Object
Detection,
ICPR21(111-118)
IEEE DOI
2105
Image quality, Image processing, Brightness, Imaging,
Object detection, Reinforcement learning, Detectors
BibRef
Barnes, D.K.[Dustin K.],
Davis, S.R.[Sara R.],
Hand, E.M.[Emily M.],
SAT-CNN: A Small Neural Network for Object Recognition from Satellite
Imagery,
ISVC20(II:39-52).
Springer DOI
2103
BibRef
Ye, X.H.[Xin-Hai],
Xiong, F.C.[Feng-Chao],
Lu, J.F.[Jian-Feng],
Zhao, H.F.[Hai-Feng],
Zhou, J.[Jun],
M2-Net: A Multi-scale Multi-level Feature Enhanced Network for Object
Detection in Optical Remote Sensing Images,
DICTA20(1-8)
IEEE DOI
2201
Semantics, Object detection, Detectors, Feature extraction,
Optical imaging, Task analysis, Remote sensing,
multi-scale analysis
BibRef
Gao, D.S.[Da-Shan],
Vasconcelos, N.M.[Nuno M.],
Integrated Learning of Saliency, Complex Features, and Object Detectors
from Cluttered Scenes,
CVPR05(II: 282-287).
IEEE DOI
0507
BibRef
And:
An Experimental Comparison of Three Guiding Principles for the
Detection Salient Image Locations: Stability, Complexity, and
Discrimination,
AttenPerf05(III: 84-84).
IEEE DOI
0507
BibRef
Yao, J.[Jian],
Zhang, Z.F.M.[Zhong-Fei Mark],
Object Detection in Aerial Imagery Based on Enhanced Semi-Supervised
Learning,
ICCV05(II: 1012-1017).
IEEE DOI
0510
BibRef
And:
Semi-Supervised Learning Based Object Detection in Aerial Imagery,
CVPR05(I: 1011-1016).
IEEE DOI
0507
Use context for detection.
BibRef
Bose, B.[Biswajit],
Grimson, W.E.L.,
Improving object classification in far-field video,
CVPR04(II: 181-188).
IEEE DOI
0408
Low resolution. Scene specific context.
BibRef
Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Camouflaged Object Detection, Camouflage .