14.3.1 Noisy Labels for Learning

Chapter Contents (Back)
Noisy Labels. Robust Technique.

Liu, T., Tao, D.,
Classification with Noisy Labels by Importance Reweighting,
PAMI(38), No. 3, March 2016, pp. 447-461.
IEEE DOI 1602
Algorithm design and analysis. Sample labels are randomly corrupted. BibRef

Zhang, R.[Rui], Chen, Z.H.[Zheng-Hao], Zhang, S.X.[San-Xing], Song, F.[Fei], Zhang, G.[Gang], Zhou, Q.C.[Quan-Cheng], Lei, T.[Tao],
Remote Sensing Image Scene Classification with Noisy Label Distillation,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
Training CNN requires lots of clean data. BibRef

Gu, S.W.[Song-Wei], Zhang, R.[Rui], Luo, H.X.[Hong-Xia], Li, M.Y.[Meng-Yao], Feng, H.[Huamei], Tang, X.G.[Xu-Guang],
Improved SinGAN Integrated with an Attentional Mechanism for Remote Sensing Image Classification,
RS(13), No. 9, 2021, pp. xx-yy.
DOI Link 2105
BibRef

Zhang, Q.[Qian], Lee, F.F.[Fei-Fei], Wang, Y.G.[Ya-Gang], Miao, R.[Ran], Chen, L.[Lei], Chen, Q.[Qiu],
An improved noise loss correction algorithm for learning from noisy labels,
JVCIR(72), 2020, pp. 102930.
Elsevier DOI 2010
Noisy labels, KL entropy, Mix-up loss, DNN BibRef

de Aquino Afonso, B.K.[Bruno Klaus], Berton, L.[Lilian],
Identifying noisy labels with a transductive semi-supervised leave-one-out filter,
PRL(140), 2020, pp. 127-134.
Elsevier DOI 2012
Semi-supervised learning, Classification, Graph-based, Filter, Label noise BibRef

Han, Y.[Yan], Roy, S.K.[Soumava Kumar], Petersson, L.[Lars], Harandi, M.[Mehrtash],
Discrepant collaborative training by Sinkhorn divergences,
IVC(112), 2021, pp. 104213.
Elsevier DOI 2107
BibRef
Earlier:
Learning from Noisy Labels via Discrepant Collaborative Training,
WACV20(3158-3167)
IEEE DOI 2006
Co-training, Noisy labels, Weak-supervised learning. Noise measurement, Training, Collaboration, Task analysis, Feature extraction, Discrete cosine transforms, Neural networks BibRef

Sun, H.L.[Hao-Liang], Guo, C.H.[Chen-Hui], Wei, Q.[Qi], Han, Z.Y.[Zhong-Yi], Yin, Y.L.[Yi-Long],
Learning to rectify for robust learning with noisy labels,
PR(124), 2022, pp. 108467.
Elsevier DOI 2203
Label noise, Meta-learning, Probabilistic model, Robust learning BibRef

Algan, G.[Görkem], Ulusoy, I.[Ilkay],
MetaLabelNet: Learning to Generate Soft-Labels From Noisy-Labels,
IP(31), 2022, pp. 4352-4362.
IEEE DOI 2207
Training, Noise measurement, Noise robustness, Feature extraction, Training data, Deep learning, Wide band gap semiconductors, meta-learning BibRef

Yi, R.[Rumeng], Huang, Y.P.[Ya-Ping],
TC-Net: Detecting Noisy Labels Via Transform Consistency,
MultMed(24), 2022, pp. 4328-4341.
IEEE DOI 2210
Noise measurement, Training, Visualization, Transforms, Predictive models, Perturbation methods, Airplanes, Noisy labels, visual attention consistency BibRef

Nomura, Y.[Yuichiro], Kurita, T.[Takio],
Sample Selection Approach with Number of False Predictions for Learning with Noisy Labels,
IEICE(E105-D), No. 10, October 2022, pp. 1759-1768.
WWW Link. 2210
BibRef

Wang, S.[Shaoru], Gao, J.[Jin], Li, B.[Bing], Hu, W.M.[Wei-Ming],
Narrowing the Gap: Improved Detector Training With Noisy Location Annotations,
IP(31), 2022, pp. 6369-6380.
IEEE DOI 2211
Annotations, Noise measurement, Detectors, Task analysis, Training, Object detection, Degradation, Object detection, noisy label, teacher-student learning BibRef

Xu, Z.[Zhe], Lu, D.[Donghuan], Luo, J.[Jie], Wang, Y.X.[Yi-Xin], Yan, J.P.[Jiang-Peng], Ma, K.[Kai], Zheng, Y.F.[Ye-Feng], Tong, R.K.Y.[Raymond Kai-Yu],
Anti-Interference From Noisy Labels: Mean-Teacher-Assisted Confident Learning for Medical Image Segmentation,
MedImg(41), No. 11, November 2022, pp. 3062-3073.
IEEE DOI 2211
Image segmentation, Noise measurement, Training, Biomedical imaging, Task analysis, Quality control, label denoising BibRef

Zhang, L.[Le], Tanno, R.[Ryutaro], Xu, M.[Moucheng], Huang, Y.[Yawen], Bronik, K.[Kevin], Jin, C.[Chen], Jacob, J.[Joseph], Zheng, Y.F.[Ye-Feng], Shao, L.[Ling], Ciccarelli, O.[Olga], Barkhof, F.[Frederik], Alexander, D.C.[Daniel C.],
Learning from multiple annotators for medical image segmentation,
PR(138), 2023, pp. 109400.
Elsevier DOI 2303
Multi-Annotator, Label fusion, Segmentation BibRef

Li, H.[Hui], Niu, Z.[Zhaodong], Sun, Q.[Quan], Li, Y.[Yabo],
Co-Correcting: Combat Noisy Labels in Space Debris Detection,
RS(14), No. 20, 2022, pp. xx-yy.
DOI Link 2211
BibRef

Miao, Q.[Qing], Wu, X.H.[Xiao-He], Xu, C.[Chao], Zuo, W.M.[Wang-Meng], Meng, Z.P.[Zhao-Peng],
On better detecting and leveraging noisy samples for learning with severe label noise,
PR(136), 2023, pp. 109210.
Elsevier DOI 2301
Severe label noise, Lipschitz regularization, Adaptive modeling and detection of label noise, Semi-supervised learning BibRef

Gong, C.[Chen], Ding, Y.L.[Yong-Liang], Han, B.[Bo], Niu, G.[Gang], Yang, J.[Jian], You, J.[Jane], Tao, D.C.[Da-Cheng], Sugiyama, M.[Masashi],
Class-Wise Denoising for Robust Learning Under Label Noise,
PAMI(45), No. 3, March 2023, pp. 2835-2848.
IEEE DOI 2302
Noise measurement, Training, Entropy, Estimation, Neural networks, Matrix decomposition, Fasteners, Label noise, centroid estimation, variance reduction BibRef

Xia, X.B.[Xiao-Bo], Han, B.[Bo], Wang, N.N.[Nan-Nan], Deng, J.K.[Jian-Kang], Li, J.[Jiatong], Mao, Y.[Yinian], Liu, T.L.[Tong-Liang],
Extended T: Learning With Mixed Closed-Set and Open-Set Noisy Labels,
PAMI(45), No. 3, March 2023, pp. 3047-3058.
IEEE DOI 2302
Noise measurement, Training, Training data, Data models, Search engines, Face recognition, Computer science, robustness BibRef

Li, S.[Shikun], Liu, T.L.[Tong-Liang], Tan, J.Y.[Ji-Yong], Zeng, D.[Dan], Ge, S.M.[Shi-Ming],
Trustable Co-Label Learning From Multiple Noisy Annotators,
MultMed(25), 2023, pp. 1045-1057.
IEEE DOI 2303
Noise measurement, Data models, Training, Labeling, Supervised learning, Robustness, Deep learning, Label noise, learning from crowds BibRef

Liang, C.[Chao], Yang, Z.X.[Zong-Xin], Zhu, L.C.[Lin-Chao], Yang, Y.[Yi],
Co-Learning Meets Stitch-Up for Noisy Multi-Label Visual Recognition,
IP(32), 2023, pp. 2508-2519.
IEEE DOI 2305
Noise measurement, Training, Dogs, Deep learning, Annotations, Visualization, Training data, Noisy labels, deep learning BibRef


Zhang, B.[Boshen], Li, Y.X.[Yu-Xi], Tu, Y.[Yuanpeng], Peng, J.L.[Jin-Long], Wang, Y.[Yabiao], Wu, C.[Cunlin], Xiao, Y.[Yang], Zhao, C.[Cairong],
Learning from Noisy Labels with Coarse-to-fine Sample Credibility Modeling,
LLID22(21-38).
Springer DOI 2304
BibRef

Yang, C.H.H.[Chao-Han Huck], Hung, D.I.T.[Danny I-Te], Liu, Y.C.[Yi-Chieh], Chen, P.Y.[Pin-Yu],
Treatment Learning Causal Transformer for Noisy Image Classification,
WACV23(6128-6139)
IEEE DOI 2302
Deep learning, Visualization, Correlation, Perturbation methods, Training data, Benchmark testing, Transformers BibRef

Garg, A.[Arpit], Nguyen, C.[Cuong], Felix, R.[Rafael], Do, T.T.[Thanh-Toan], Carneiro, G.[Gustavo],
Instance-Dependent Noisy Label Learning via Graphical Modelling,
WACV23(2287-2297)
IEEE DOI 2302
Training, Deep learning, Visualization, Biological system modeling, Ecosystems, Benchmark testing, and algorithms (including transfer) BibRef

Smart, B.[Brandon], Carneiro, G.[Gustavo],
Bootstrapping the Relationship Between Images and Their Clean and Noisy Labels,
WACV23(5333-5343)
IEEE DOI 2302
Training, Computational modeling, Semisupervised learning, Prediction algorithms, Data models, visual reasoning BibRef

Liu, J.[Jiarun], Jiang, D.G.[Da-Guang], Yang, Y.K.[Yu-Kun], Li, R.R.[Rui-Rui],
Agreement or Disagreement in Noise-tolerant Mutual Learning?,
ICPR22(4801-4807)
IEEE DOI 2212
Training, Deep learning, Codes, Collaboration, Resists, Robustness BibRef

Fu, X.M.[Xuan-Ming], Yang, Z.F.[Zheng-Feng], Xue, H.[Hao], Wang, J.L.[Jian-Lin], Zeng, Z.B.[Zhen-Bing],
Robust Training with Feature-Based Adversarial Example,
ICPR22(2957-2963)
IEEE DOI 2212
Training, Perturbation methods, Robustness BibRef

Li, J.C.[Ji-Chang], Li, G.B.[Guan-Bin], Liu, F.[Feng], Yu, Y.Z.[Yi-Zhou],
Neighborhood Collective Estimation for Noisy Label Identification and Chiorrection,
ECCV22(XXIV:128-145).
Springer DOI 2211
BibRef

Gao, Z.Q.[Zheng-Qi], Sun, F.K.[Fan-Keng], Yang, M.[Mingran], Ren, S.[Sucheng], Xiong, Z.[Zikai], Engeler, M.[Marc], Burazer, A.[Antonio], Wildling, L.[Linda], Daniel, L.[Luca], Boning, D.S.[Duane S.],
Learning from Multiple Annotator Noisy Labels via Sample-Wise Label Fusion,
ECCV22(XXIV:407-422).
Springer DOI 2211
BibRef

Wei, Q.[Qi], Sun, H.L.[Hao-Liang], Lu, X.[Xiankai], Yin, Y.L.[Yi-Long],
Self-Filtering: A Noise-Aware Sample Selection for Label Noise with Confidence Penalization,
ECCV22(XXX:516-532).
Springer DOI 2211
BibRef

Cao, T.Y.[Tian-Yue], Wang, Y.X.[Yong-Xin], Xing, Y.F.[Yi-Fan], Xiao, T.J.[Tian-Jun], He, T.[Tong], Zhang, Z.[Zheng], Zhou, H.[Hao], Tighe, J.[Joseph],
PSS: Progressive Sample Selection for Open-World Visual Representation Learning,
ECCV22(XXXI:278-294).
Springer DOI 2211
BibRef

Kim, K.I.[Kwang In],
Active Label Correction Using Robust Parameter Update and Entropy Propagation,
ECCV22(XXI:1-16).
Springer DOI 2211
BibRef

Zhao, G.L.[Gan-Long], Li, G.B.[Guan-Bin], Qin, Y.P.[Yi-Peng], Liu, F.[Feng], Yu, Y.Z.[Yi-Zhou],
Centrality and Consistency: Two-Stage Clean Samples Identification for Learning with Instance-Dependent Noisy Labels,
ECCV22(XXV:21-37).
Springer DOI 2211
BibRef

Kye, S.M.[Seong Min], Choi, K.[Kwanghee], Yi, J.Y.[Joon-Young], Chang, B.[Buru],
Learning with Noisy Labels by Efficient Transition Matrix Estimation to Combat Label Miscorrection,
ECCV22(XXV:717-738).
Springer DOI 2211
BibRef

Gao, Z.[Ziyang], Yan, Y.P.[Ya-Ping], Geng, X.[Xin],
Learning from Noisy Labels via Meta Credible Label Elicitation,
ICIP22(1391-1395)
IEEE DOI 2211
Degradation, Correlation, Neural networks, Benchmark testing, Robustness, Noise measurement, Meta Credible Label Elicitation, Label distribution BibRef

Gao, B.Y.[Bo-Yan], Gouk, H.[Henry], Hospedales, T.M.[Timothy M.],
Searching for Robustness: Loss Learning for Noisy Classification Tasks,
ICCV21(6650-6659)
IEEE DOI 2203
Training, Training data, Network architecture, Search problems, Robustness, Machine learning architectures and formulations BibRef

Wu, Z.F.[Zhi-Fan], Wei, T.[Tong], Jiang, J.W.[Jian-Wen], Mao, C.J.[Chao-Jie], Tang, M.Q.[Ming-Qian], Li, Y.F.[Yu-Feng],
NGC: A Unified Framework for Learning with Open-World Noisy Data,
ICCV21(62-71)
IEEE DOI 2203
Training, Degradation, Prototypes, Machine learning, Detectors, Predictive models, Recognition and classification, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Zhou, X.[Xiong], Liu, X.M.[Xian-Ming], Wang, C.Y.[Chen-Yang], Zhai, D.[Deming], Jiang, J.J.[Jun-Jun], Ji, X.Y.[Xiang-Yang],
Learning with Noisy Labels via Sparse Regularization,
ICCV21(72-81)
IEEE DOI 2203
Training, Deep learning, Neural networks, Fitting, Robustness, Entropy, Recognition and classification, Efficient training and inference methods BibRef

Yao, Y.Z.[Ya-Zhou], Sun, Z.[Zeren], Zhang, C.Y.[Chuan-Yi], Shen, F.M.[Fu-Min], Wu, Q.[Qi], Zhang, J.[Jian], Tang, Z.M.[Zhen-Min],
Jo-SRC: A Contrastive Approach for Combating Noisy Labels,
CVPR21(5188-5197)
IEEE DOI 2111
Training, Degradation, Deep learning, Codes, Robustness, Pattern recognition BibRef

Goel, P.[Purvi], Chen, L.[Li],
On the Robustness of Monte Carlo Dropout Trained with Noisy Labels,
WiCV21(2219-2228)
IEEE DOI 2109
Training, Uncertainty, Monte Carlo methods, Neurons, Estimation, Robustness, Pattern recognition BibRef

Algan, G.[Görkem], Ulusoy, I.[Ilkay],
Meta Soft Label Generation for Noisy Labels,
ICPR21(7142-7148)
IEEE DOI 2105
Training, Degradation, Adaptation models, Neural networks, Clothing, Training data, deep learning, label noise, meta-learning BibRef

Wei, H., Feng, L., Chen, X., An, B.,
Combating Noisy Labels by Agreement: A Joint Training Method with Co-Regularization,
CVPR20(13723-13732)
IEEE DOI 2008
Noise measurement, Training, Robustness, Semisupervised learning, Neural networks, Machine learning, Estimation BibRef

Zhang, W.H.[Wei-He], Wang, Y.[Yali], Qiao, Y.[Yu],
MetaCleaner: Learning to Hallucinate Clean Representations for Noisy-Labeled Visual Recognition,
CVPR19(7365-7374).
IEEE DOI 2002
BibRef

Li, Y.C.[Yun-Cheng], Yang, J.C.[Jian-Chao], Song, Y.[Yale], Cao, L.L.[Liang-Liang], Luo, J.B.[Jie-Bo], Li, L.J.[Li-Jia],
Learning from Noisy Labels with Distillation,
ICCV17(1928-1936)
IEEE DOI 1802
graph theory, image recognition, learning (artificial intelligence), statistical analysis, Visualization BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Outlier Detection and Analysis, Robust Analysis, Out of Distribution .


Last update:Jun 1, 2023 at 10:05:03