2-D/3-D Lines Accumuation Techniques

Chapter Contents (Back)
Matching, Accumulation. Matching, Lines.

Horaud, R.,
New Methods for Matching 3-D Objects with Single Perspective Views,
PAMI(9), No. 3, May 1987, pp. 401-412. Hough. The basic technique is to "backproject" the feature (tri-hedral junction) onto the Gaussian Sphere to get the possible orientations of the surface determined by the intersection of the curves for all the junctions around the surface. I.e. a Hough technique applied to surfaces. BibRef 8705

Horaud, R.,
Spatial Object Perception from an Image,
IJCAI85(1116-1119). BibRef 8500

del Bimbo, A., Nesi, P., and Consales, R.,
3-D Object Recognition from Single Perspective Views,
VF91(197-204). Similar to
See also New Methods for Matching 3-D Objects with Single Perspective Views. BibRef 9100

12.2.3 3-D Lines with 3-D Structure

Chapter Contents (Back)
Matching, Models. Matching, Lines. Line Matching.

Chen, H.H., and Huang, T.S.,
Matching 3-D Line Segments with Applications to Multiple-Object Motion Estimation,
PAMI(12), No. 10, October 1990, pp. 1002-1008.
IEEE DOI BibRef 9010
An Algorithm for Matching 3-D Line Segments with Application to Multiple-Object Motion Estimation,
CVWS87(151-156). A simple matching scheme with 3-D data for the segments given by a hand match of stereo pairs. The data is very clean (depends on the stereo matching data to be clean) so the claims of broken line matching are not tested. BibRef

Murray, D.W., and Cook, D.B.,
Using the Orientation of Fragmentary 3D Edge Segments for Polyhedral Object Recognition,
IJCV(2), No. 2, September 1988, pp. 153-169.
Springer DOI Reduce the search space for 3D edge data to 3D models. BibRef 8809

Boyter, B.A., and Aggarwal, J.K.,
Recognition of Polyhedra from Range Data,
IEEE_EXPERT(1), Spring 1986, pp. 47-59. Recognize Line Models. The use of ranging devices to get surfaces, then the identity of the polyhedra. BibRef 8600

Brady, J.P., Nandhakumar, N., and Aggarwal, J.K.,
Recent Progress in the Recognition of Objects from Range Data,
IVC(7), No. 4, November 1989, pp. 295-307.
Elsevier DOI BibRef 8911
Earlier: ICPR88(I: 85-92).
And: Univ. of Texas-TR-88-1-46, January 1988. Survey, Descriptions, Three-Dimensional. Descriptions, Three-Dimensional. Recognize Range Data. BibRef

Magee, M.J., Boyter, B.A.[Brian A.], Chien, C.H., and Aggarwal, J.K.,
Experiments in Intensity Guided Range Sensing Recognition of Three-Dimensional Objects,
PAMI(7), No. 6, November 1985, pp. 629-637. Recognize Three-Dimensional Objects. Continuation of AND and OR combination of range and intensity data.
See also Experiments in Combining Intensity and Range Edge Maps. For use in motion setimation:
See also Determining Motion Parameters Using Intensity Guided Range Sensing. BibRef 8511

Magee, M.J., and Aggarwal, J.K.,
Intensity Guided Range Sensing Recognition of Three-Dimensional Objects,
CVPR83(550-552). BibRef 8300

Boyter, B.A., Aggarwal, J.K.,
Recognition with Range and Intensity Data,
CVWS84(112-117). BibRef 8400

Gu, W.K., Yang, J.Y., and Huang, T.S.,
Matching Perspective Views of a Polyhedron Using Circuits,
PAMI(9), No. 3, May 1987, pp. 390-400. BibRef 8705
Matching Perspective Views of a 3-D Object Using Circuits,
ICPR84(441-443). Use string representation of the circuit around the polyhedron, and match the strings. BibRef

Karasick, M.[Michel],
The Same-Object Problem for Polyhedral Solids,
CVGIP(46), No. 1, April 1989, pp. 22-36.
Elsevier DOI BibRef 8904

Byun, J.E.[Jong-Eun], Nagata, T.I.[Ta-I],
Active Visual Sensing of the 3-D Pose of a Flexible Object,
Robotica(14), No. 2, March-April 1996, pp. 173-188. BibRef 9603

Byun, J.E.[Jong-Eun], Nagata, T.I.[Ta-I], Byun, J.E., Nagata, T.,
Determining the 3-D Pose of a Flexible Object by Stereo Matching of Curvature Representations,
PR(29), No. 8, August 1996, pp. 1297-1307.
Elsevier DOI 9608

Heisterkamp, D.R., Bhattacharya, P.,
Matching of 3D Polygonal Arcs,
PAMI(19), No. 1, January 1997, pp. 68-73.
Define a distance metric between arcs of the same length. The minimum is the smallest eigenvalue of a matrix. Use as a basis for arcs of unequal length. 2D Arcs:
See also Matching 2D Polygonal Arcs by Using a Subgroup of the Unit Quaternions. BibRef

Murtagh, F., Lauberts, A.,
A Curve Matching Problem in Astronomy,
PRL(4), 1986, pp. 465-469. BibRef 8600

Li, S.Z.[Stan Z.],
Invariant Representation, Matching and Pose Estimation of 3D Space-Curves Under Similarity Transformations,
PR(30), No. 3, March 1997, pp. 447-458.
Elsevier DOI 9705

Li, S.Z.[Stan Z.],
Recognizing Multiple Overlapping Objects in Image: A Optimal Formulation,
IP(9), No. 2, February 2000, pp. 273-277.

Kollnig, H.[Henner], Nagel, H.H.[Hans-Hellmut],
3D Pose Estimation by Directly Matching Polyhedral Models to Gray Value Gradients,
IJCV(23), No. 3, June-July 1997, pp. 283-302.
DOI Link 9708
3D Pose Estimation by Fitting Image Gradients Directly to Polyhedral Models,
IEEE DOI Pose in a motion sequence, fit the image gradient to the polyhedral model. BibRef

Kohlhepp, P.[Peter], Fischer, D.[Daniel], Hoffmann, E.[Ekkehard],
Intrinsic line features and contour metric for locating 3-D objects in sparse, segmented range images,
IVC(17), No. 5/6, April 1999, pp. 403-417.
Elsevier DOI
See also evolutionary algorithm for the registration of 3-d surface representations, An. BibRef 9904

Csurka, G.[Gabriella], Demirdjian, D.[David], Horaud, R.[Radu],
Finding the Collineation between Two Projective Reconstructions,
CVIU(75), No. 3, September 1999, pp. 260-268.
DOI Link BibRef 9909

Lourakis, M.I.A.[Manolis I.A.], Tzurbakis, S.V.[Stavros V.], Argyros, A.A.[Antonis A.], Orphanoudakis, S.C.[Stelios C.],
Feature transfer and matching in disparate stereo views through the use of plane homographies,
PAMI(25), No. 2, February 2003, pp. 271-276.
Using Geometric Constraints for Matching Disparate Stereo Views of 3d Scenes Containing Planes,
ICPR00(Vol I: 419-422).
Given point or line features in 2 stereo images, match them with features from a second pair. Assume scene has 2 planar surfaces. BibRef

de Trazegnies, C., Urdiales García, C.[Cristina], Bandera Rubio, A.[Antonio], Sandoval Hernández, F.[Francisco],
3D object recognition based on curvature information of planar views,
PR(36), No. 11, November 2003, pp. 2571-2584.
Elsevier DOI 0309

See also Hidden Markov Model object recognition technique for incomplete and distorted corner sequences, A.
See also Planar shape indexing and retrieval based on Hidden Markov Models. BibRef

Winkelbach, S.[Simon], Wahl, F.M.[Friedrich M.],
Pairwise Matching of 3D Fragments Using Cluster Trees,
IJCV(78), No. 1, June 2008, pp. 1-13.
Springer DOI 0803

Winkelbach, S.[Simon], Rilk, M.[Markus], Schönfelder, C.[Christoph], Wahl, F.M.[Friedrich M.],
Fast Random Sample Matching of 3d Fragments,
Springer DOI 0505

Winkelbach, S.[Simon], Spehr, J.[Jens], Buchholz, D.[Dirk], Rilk, M.[Markus], Wahl, F.M.[Friedrich M.],
Shape (self-)similarity and Dissimilarity Rating for Segmentation and Matching,
Springer DOI 1209

Bernal-Marin, M.[Miguel], Bayro-Corrochano, E.[Eduardo],
Integration of Hough Transform of lines and planes in the framework of conformal geometric algebra for 2D and 3D robot vision,
PRL(32), No. 16, 1 December 2011, pp. 2213-2223.
Elsevier DOI 1112
2D and 3D pattern recognition; Hough Transform; SLAM; Geometric algebra; Robot vision BibRef

Falcon-Morales, L.E.[Luis E.], Bayro-Corrochano, E.[Eduardo],
Radon transform and Conformal Geometric Algebra with lines,

Yang, C.[Cong], Tiebe, O.[Oliver], Shirahama, K.[Kimiaki], Grzegorzek, M.[Marcin],
Object matching with hierarchical skeletons,
PR(55), No. 1, 2016, pp. 183-197.
Elsevier DOI 1604
Skeletonisation BibRef

Yang, C.[Cong], Feinen, C.[Christian], Tiebe, O.[Oliver], Shirahama, K.[Kimiaki], Grzegorzek, M.[Marcin],
Shape-based object matching using interesting points and high-order graphs,
PRL(83, Part 3), No. 1, 2016, pp. 251-260.
Elsevier DOI 1609
Shape matching BibRef

Yang, C.[Cong], Tiebe, O.[Oliver], Pietsch, P.[Pit], Feinen, C.[Christian], Kelter, U.[Udo], Grzegorzek, M.[Marcin],
Shape-based object retrieval by contour segment matching,
Decision support systems BibRef

Feinen, C.[Christian], Czajkowska, J.[Joanna], Grzegorzek, M.[Marcin], Latecki, L.J.[Longin Jan],
3D object retrieval by 3D curve matching,
Databases BibRef

Feinen, C.[Christian], Yang, C.[Cong], Tiebe, O.[Oliver], Grzegorzek, M.[Marcin],
Shape Matching Using Point Context and Contour Segments,
ACCV14(IV: 95-110).
Springer DOI 1504

Zhao, F.Q.[Fu-Qun], Zhou, M.Q.[Ming-Quan], Geng, G.H.[Guo-Hua], Zhu, L.P.[Li-Pin],
Rigid blocks matching method based on contour curves and feature regions,
IET-CV(12), No. 1, February 2018, pp. 76-85.
DOI Link 1801
Rigid blocks with a specified thickness in point clouds. BibRef

Liu, L.[Liu], Li, H.D.[Hong-Dong], Yao, H.D.[Hao-Dong], Zha, R.[Ruyi],
PlückerNet: Learn to Register 3D Line Reconstructions¨,
Geometry, Technological innovation, Impedance matching, Neural networks, Multilayer perceptrons, Feature extraction BibRef

Nakayama, Y.[Yusuke], Saito, H.[Hideo], Shimizu, M.[Masayoshi], Yamaguchi, N.[Nobuyasu],
3D Line Segment Based Model Generation by RGB-D Camera for Camera Pose Estimation,
Springer DOI 1504

Nakayama, Y.[Yusuke], Honda, T.[Toshihiro], Saito, H.[Hideo], Shimizu, M.[Masayoshi], Yamaguchi, N.[Nobuyasu],
Accurate Camera Pose Estimation for KinectFusion Based on Line Segment Matching by LEHF,
Accuracy BibRef

Galo, M.[Mauricio], Tozzi, C.L.[Clesio L.],
The Concept of Matching Parallelepiped and Its Use in the Correspondence Problem,
IEEE DOI BibRef 9900

Hospital, M., Yamada, H., Kasvand, T., Umeyama, S.,
3D Curve Based Matching Method Using Dynamic Programming,
ICCV87(728-732). BibRef 8700

Boyter, B.A.,
Three-Dimensional Matching Using Range Data,
CAIA84(211-216). BibRef 8400

Pajdla, T.[Tomáš], Van Gool, L.J.[Luc J.],
Matching of 3D Curves Using Semi-Differential Invariants,
IEEE DOI BibRef 9500
Efficient matching of space curves,
Springer DOI 9509

Chapter on Registration, Matching and Recognition Using Points, Lines, Regions, Areas, Surfaces continues in
3-D/3-D Matching Accumulation Techniques .

Last update:May 6, 2024 at 15:50:14