14.1.8.5 Semi-Supervised Domain Adaptation

Chapter Contents (Back)
Semi-Supervised Adaptation. Transfer Learning. Domain Adaptation.
See also Transfer Learning from Other Tasks, Other Classes.
See also Multi-Label Classification, Multilabel Classification.
See also Multi-Source Domain Adaptation.
See also Knowledge Distillation.

Xiao, M., Guo, Y.,
Feature Space Independent Semi-Supervised Domain Adaptation via Kernel Matching,
PAMI(37), No. 1, January 2015, pp. 54-66.
IEEE DOI 1412
Adaptation models BibRef

Samat, A.[Alim], Persello, C.[Claudio], Gamba, P.[Paolo], Liu, S.C.[Si-Cong], Abuduwaili, J.[Jilili], Li, E.[Erzhu],
Supervised and Semi-Supervised Multi-View Canonical Correlation Analysis Ensemble for Heterogeneous Domain Adaptation in Remote Sensing Image Classification,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link 1705
BibRef

Pereira, L.A.M.[Luís A.M.], da Silva Torres, R.[Ricardo],
Semi-supervised transfer subspace for domain adaptation,
PR(75), No. 1, 2018, pp. 235-249.
Elsevier DOI 1712
Cross-domain knowledge transfer BibRef

Ding, Z., Nasrabadi, N.M., Fu, Y.,
Semi-supervised Deep Domain Adaptation via Coupled Neural Networks,
IP(27), No. 11, November 2018, pp. 5214-5224.
IEEE DOI 1809
feature extraction, learning (artificial intelligence), neural nets, pattern classification, probability, deep neural networks BibRef

Han, W.[Wei], Feng, R.[Ruyi], Wang, L.Z.[Li-Zhe], Cheng, Y.F.[Ya-Fan],
A semi-supervised generative framework with deep learning features for high-resolution remote sensing image scene classification,
PandRS(145), 2018, pp. 23-43.
Elsevier DOI 1810
Scene classification, Deep learning, Self-label, High resolution remote sensing images BibRef

Chen, W., Hsu, T.H., Tsai, Y.H., Chen, M., Wang, Y.F.,
Transfer Neural Trees: Semi-Supervised Heterogeneous Domain Adaptation and Beyond,
IP(28), No. 9, Sep. 2019, pp. 4620-4633.
IEEE DOI 1908
image classification, learning (artificial intelligence), pattern classification, trees (mathematics), zero-shot learning BibRef

Wang, W.[Wei], Wang, H.[Hao], Zhang, Z.X.[Zhao-Xiang], Zhang, C.[Chen], Gao, Y.[Yang],
Semi-Supervised Domain Adaptation Via Fredholm Integral Based Kernel Methods,
PR(85), 2019, pp. 185-197.
Elsevier DOI 1810
Domain adaptation, Semi-supervised learning, Multiple kernel learning, Hilbert space embedding of distributions BibRef

Li, L.M.[Li-Min], Zhang, Z.Y.[Zhen-Yue],
Semi-Supervised Domain Adaptation by Covariance Matching,
PAMI(41), No. 11, November 2019, pp. 2724-2739.
IEEE DOI 1910
Kernel, Convergence, Adaptation models, Mathematical model, Eigenvalues and eigenfunctions, Manifolds, domain adaptation BibRef

Li, W.[Wei], Wang, M.[Meng], Wang, H.B.[Hong-Bin], Zhang, Y.F.[Ya-Fei],
Object detection based on semi-supervised domain adaptation for imbalanced domain resources,
MVA(31), No. 3, March 2020, pp. Article18.
WWW Link. 2004
BibRef

Wang, W.[Wei], Chen, S.L.[Sheng-Lun], Xiang, Y.K.[Yuan-Kai], Sun, J.[Jing], Li, H.J.[Hao-Jie], Wang, Z.H.[Zhi-Hui], Sun, F.M.[Fu-Ming], Ding, Z.M.[Zheng-Ming], Li, B.[Baopu],
Sparsely-labeled source assisted domain adaptation,
PR(112), 2021, pp. 107803.
Elsevier DOI 2102
Domain adaptation, Sparsely-labeled source, Semi-supervised clustering, Label propagation BibRef

Fang, Z.[Zhen], Lu, J.[Jie], Liu, F.[Feng], Zhang, G.Q.[Guang-Quan],
Semi-Supervised Heterogeneous Domain Adaptation: Theory and Algorithms,
PAMI(45), No. 1, January 2023, pp. 1087-1105.
IEEE DOI 2212
Classification algorithms, Task analysis, Kernel, Training data, Training, Picture archiving and communication systems, Manifolds, classification BibRef

Yang, S.Q.[Shi-Qi], Wang, Y.X.[Ya-Xing], Herranz, L.[Luis], Jui, S.L.[Shang-Ling], van de Weijer, J.[Joost],
Casting a BAIT for offline and online source-free domain adaptation,
CVIU(234), 2023, pp. 103747.
Elsevier DOI 2307
BibRef
Earlier: A1, A2, A5, A3, A4:
Generalized Source-free Domain Adaptation,
ICCV21(8958-8967)
IEEE DOI 2203
Source-free domain adaptation, Online domain adaptation. Training, Adaptation models, Codes, Data models, Transfer/Low-shot/Semi/Unsupervised Learning, Recognition and classification BibRef

Li, J.C.[Ji-Chang], Li, G.B.[Guan-Bin], Yu, Y.Z.[Yi-Zhou],
Adaptive Betweenness Clustering for Semi-Supervised Domain Adaptation,
IP(32), 2023, pp. 5580-5594.
IEEE DOI 2310
BibRef

Li, J.C.[Ji-Chang], Li, G.B.[Guan-Bin], Yu, Y.Z.[Yi-Zhou],
Inter-domain mixup for semi-supervised domain adaptation,
PR(146), 2024, pp. 110023.
Elsevier DOI 2311
Semi-supervised domain adaptation, Inter-domain mixup, Neighborhood expansion BibRef

Li, J.C.[Ji-Chang], Li, G.B.[Guan-Bin], Shi, Y.[Yemin], Yu, Y.Z.[Yi-Zhou],
Cross-Domain Adaptive Clustering for Semi-Supervised Domain Adaptation,
CVPR21(2505-2514)
IEEE DOI 2111
Training, Adaptation models, Training data, Benchmark testing, Data models, Adversarial machine learning BibRef

Huang, W.[Wei], Shi, Y.L.[Yi-Lei], Xiong, Z.T.[Zhi-Tong], Wang, Q.[Qi], Zhu, X.X.[Xiao Xiang],
Semi-supervised bidirectional alignment for Remote Sensing cross-domain scene classification,
PandRS(195), 2023, pp. 192-203.
Elsevier DOI 2301
Remote sensing, Semi-supervised domain adaptation, Cross-domain classification, Bidirectional sample-class alignment BibRef

Li, X.J.[Xing-Jian], Abuduweili, A.[Abulikemu], Shi, H.[Humphrey], Yang, P.K.[Peng-Kun], Dou, D.J.[De-Jing], Xiong, H.Y.[Hao-Yi], Xu, C.Z.[Cheng-Zhong],
Semi-supervised transfer learning with hierarchical self-regularization,
PR(144), 2023, pp. 109831.
Elsevier DOI 2310
BibRef
Earlier: A2, A1, A3, A7, A5, Only:
Adaptive Consistency Regularization for Semi-Supervised Transfer Learning,
CVPR21(6919-6928)
IEEE DOI 2111
Semi-supervised learning, Transfer learning, Fine-tuning, Deep learning, Hierarchical consistency, Adaptive sample selection. Adaptation models, Codes, Supervised learning, Benchmark testing BibRef

Park, S.[Sunghong], Kim, M.J.[Myung Jun], Park, K.[Kanghee], Shin, H.J.[Hyun-Jung],
Mutual Domain Adaptation,
PR(145), 2024, pp. 109919.
Elsevier DOI 2311
Domain adaptation, Semi-supervised learning, Label propagation, Pseudo-labeling BibRef

Gu, X.[Xiang], Sun, J.[Jian], Xu, Z.B.[Zong-Ben],
Unsupervised and Semi-Supervised Robust Spherical Space Domain Adaptation,
PAMI(46), No. 3, March 2024, pp. 1757-1774.
IEEE DOI 2402
BibRef
Earlier:
Spherical Space Domain Adaptation With Robust Pseudo-Label Loss,
CVPR20(9098-9107)
IEEE DOI 2008
Training, Face recognition, Labeling, Feature extraction, Task analysis, Target recognition, Sun, Domain adaptation, reweighted adversarial training. Robustness, Mixture models, Entropy, Data models, Labeling BibRef

Liu, X.[Xuan], Huang, Y.[Ying], Wang, H.[Hao], Xiao, Z.[Zheng], Zhang, S.[Shigeng],
Universal and Scalable Weakly-Supervised Domain Adaptation,
IP(33), 2024, pp. 1313-1325.
IEEE DOI 2402
Noise measurement, Feature extraction, Adaptation models, Training, Scalability, Generators, Data models, pseudo-labels BibRef

Han, Z.[Zheng], Zhu, X.B.[Xia-Bin], Yang, C.[Chun], Fang, Z.Y.[Zhi-Yu], Qin, J.Y.[Jing-Yan], Yin, X.C.[Xu-Cheng],
Semi-supervised domain adaptation via subspace exploration,
IET-CV(18), No. 3, 2024, pp. 370-380.
DOI Link 2404
image classification, image representation BibRef

Qiao, Z.Y.[Zi-Yue], Xiao, M.[Meng], Guo, W.Y.[Wei-Yu], Luo, X.[Xiao], Xiong, H.[Hui],
Information filtering and interpolating for semi-supervised graph domain adaptation,
PR(153), 2024, pp. 110498.
Elsevier DOI Code:
WWW Link. 2405
Transfer learning, Semi-supervised learning, Domain adaptation BibRef

Lan, M.C.[Meng-Cheng], Meng, M.[Min], Yu, J.[Jun], Wu, J.G.[Ji-Gang],
Learning to Discover Knowledge: A Weakly-Supervised Partial Domain Adaptation Approach,
IP(33), 2024, pp. 4090-4103.
IEEE DOI Code:
WWW Link. 2407
Noise measurement, Task analysis, Training, Adaptation models, Noise, Annotations, Standards, Domain adaptation, distribution adaptation BibRef

Luo, H.[Hao], Tian, Z.Q.[Zhi-Qiang], Zhang, K.B.[Kai-Bing], Wang, G.[Guofa], Du, S.[Shaoyi],
Semi-Supervised Domain Adaptation via Joint Transductive and Inductive Subspace Learning,
MultMed(26), 2024, pp. 10431-10445.
IEEE DOI 2411
Training, Task analysis, Tensors, Learning systems, Transfer learning, Minimization methods, Feature extraction, semi-supervised domain adaptation BibRef

Kechaou, M.[Marwa], Alaya, M.Z.[Mokhtar Z.], Hérault, R.[Romain], Gasso, G.[Gilles],
Adversarial Semi-supervised domain adaptation for semantic segmentation: A new role for labeled target samples,
CVIU(253), 2025, pp. 104305.
Elsevier DOI 2503
Domain Adaptation, Semantic Segmentation, Semi-supervised learning, Adversarial learning BibRef

Zhou, H.[Heng], Zhong, P.[Ping],
Wave-based cross-phase representation for weakly supervised classification,
IVC(158), 2025, pp. 105527.
Elsevier DOI 2505
Weakly supervised learning, Wave representation, Feature interaction, Image classification, Token mixing BibRef


Fan, Y.X.[Yu-Xin], Cui, J.[Junbiao], Liang, J.[Jiye],
Learning Textual Prompts for Open-World Semi-Supervised Learning,
CVPR25(14756-14765)
IEEE DOI 2508
Measurement, Image recognition, Computational modeling, Noise, Semisupervised learning, Feature extraction, local visual features BibRef

Wu, Z.Y.[Zhi-Yu], Cui, J.S.[Jin-Shi],
Image-feature Weak-to-strong Consistency: An Enhanced Paradigm for Semi-supervised Learning,
ECCV24(XV: 372-388).
Springer DOI 2412
BibRef

Song, J.[Junha], Kim, T.S.[Tae Soo], Kim, J.[Junha], Nam, G.[Gunhee], Kooi, T.[Thijs], Choo, J.[Jaegul],
Is User Feedback Always Informative? Retrieval Latent Defending for Semi-supervised Domain Adaptation Without Source Data,
ECCV24(XXV: 72-92).
Springer DOI 2412
BibRef

Zhang, W.Y.[Wen-Yu], Liu, Q.[Qingmu], Cong, F.O.W.[Felix Ong Wei], Ragab, M.[Mohamed], Foo, C.S.[Chuan-Sheng],
Universal Semi-Supervised Domain Adaptation by Mitigating Common-Class Bias,
CVPR24(23912-23921)
IEEE DOI 2410
Adaptation models, Computational modeling, Machine learning, Benchmark testing, Data models, semi-supervised domain adaptation BibRef

Yan, Z.Z.[Zi-Zheng], Wu, Y.S.[Yu-Shuang], Qin, Y.P.[Yi-Peng], Han, X.G.[Xiao-Guang], Cui, S.G.[Shu-Guang], Li, G.B.[Guan-Bin],
Universal Semi-supervised Model Adaptation via Collaborative Consistency Training,
WACV24(861-871)
IEEE DOI 2404
Training, Adaptation models, Computational modeling, Collaboration, Predictive models, Semisupervised learning, Algorithms BibRef

Rahman, M.M.[Md Mahmudur], Panda, R.[Rameswar], Ul Alam, M.A.[Mohammad Arif],
Semi-Supervised Domain Adaptation with Auto-Encoder via Simultaneous Learning,
WACV23(402-411)
IEEE DOI 2302
Training, Adaptation models, Computational modeling, Linear programming, Convergence, Vision + language and/or other modalities BibRef

Lee, H.J.[Hyun-Jae], Lee, G.[Gihyeon], Kim, J.[Junhwan], Cho, S.J.[Sung-Jun], Kim, D.[Dohyun], Yoo, D.[Donggeun],
Improving Multi-fidelity Optimization with a Recurring Learning Rate for Hyperparameter Tuning,
WACV23(2308-2317)
IEEE DOI 2302
Training, Schedules, Transfer learning, Optimization methods, Semisupervised learning, Convolutional neural networks, visual reasoning BibRef

Pérez, G.[Gustavo], Maji, S.[Subhransu],
Domain Adaptors for Hyperspectral Images,
ICPR22(3048-3055)
IEEE DOI 2212
Training, Adaptation models, Color, Benchmark testing, Semisupervised learning, Transformers BibRef

Kuchibhotla, H.C.[Hari Chandana], Malagi, S.S.[Sumitra S.], Chandhok, S.[Shivam], Balasubramanian, V.N.[Vineeth N.],
Unseen Classes at a Later Time? No Problem,
CVPR22(9235-9244)
IEEE DOI 2210
Adaptation models, Protocols, Bidirectional control, Benchmark testing, Unsupervised learning, Self- semi- meta- unsupervised learning BibRef

Li, S.T.[Shuang-Tong], Zhou, T.Y.[Tian-Yi], Tian, X.[Xinmei], Tao, D.C.[Da-Cheng],
Learning to Collaborate in Decentralized Learning of Personalized Models,
CVPR22(9756-9765)
IEEE DOI 2210
Training, Adaptation models, Costs, Network topology, Computational modeling, Aggregates, Image edge detection, Self- semi- meta- Machine learning BibRef

Chen, L.[Liang], Lou, Y.H.[Yi-Hang], He, J.Z.[Jian-Zhong], Bai, T.[Tao], Deng, M.H.[Ming-Hua],
Geometric Anchor Correspondence Mining with Uncertainty Modeling for Universal Domain Adaptation,
CVPR22(16113-16122)
IEEE DOI 2210
Representation learning, Manifolds, Adaptation models, Uncertainty, Computational modeling, Logic gates, Representation learning, Self- semi- meta- Transfer/low-shot/long-tail learning BibRef

Xie, M.[Ming], Li, Y.X.[Yu-Xi], Wang, Y.B.[Ya-Biao], Luo, Z.K.[Ze-Kun], Gan, Z.Y.[Zhen-Ye], Sun, Z.Y.[Zhong-Yi], Chi, M.M.[Ming-Min], Wang, C.J.[Cheng-Jie], Wang, P.[Pei],
Learning Distinctive Margin toward Active Domain Adaptation,
CVPR22(7983-7992)
IEEE DOI 2210
Training, Support vector machines, Adaptation models, Analytical models, Computational modeling, Scalability, Self- semi- meta- unsupervised learning BibRef

Sun, T.[Tao], Lu, C.[Cheng], Zhang, T.S.[Tian-Shuo], Ling, H.B.[Hai-Bin],
Safe Self-Refinement for Transformer-based Domain Adaptation,
CVPR22(7181-7190)
IEEE DOI 2210
Training, Adaptation models, Computational modeling, Benchmark testing, Predictive models, Transformers, Data models, Self- semi- meta- unsupervised learning BibRef

Ding, N.[Ning], Xu, Y.X.[Yi-Xing], Tang, Y.H.[Ye-Hui], Xu, C.[Chao], Wang, Y.H.[Yun-He], Tao, D.C.[Da-Cheng],
Source-Free Domain Adaptation via Distribution Estimation,
CVPR22(7202-7212)
IEEE DOI 2210
Representation learning, Data privacy, Estimation, Training data, Benchmark testing, Data models, Self- semi- meta- unsupervised learning BibRef

Shen, Y.F.[Yue-Fan], Yang, Y.C.[Yan-Chao], Yan, M.[Mi], Wang, H.[He], Zheng, Y.Y.[You-Yi], Guibas, L.J.[Leonidas J.],
Domain Adaptation on Point Clouds via Geometry-Aware Implicits,
CVPR22(7213-7222)
IEEE DOI 2210
Point cloud compression, Training, Shape, Neural networks, Robot sensing systems, Transfer/low-shot/long-tail learning, Self- semi- meta- unsupervised learning BibRef

Saito, K.[Kuniaki], Saenko, K.[Kate],
OVANet: One-vs-All Network for Universal Domain Adaptation,
ICCV21(8980-8989)
IEEE DOI 2203
Entropy, Transfer/Low-shot/Semi/Unsupervised Learning, Recognition and classification BibRef

Li, K.[Kai], Liu, C.[Chang], Zhao, H.[Handong], Zhang, Y.[Yulun], Fu, Y.[Yun],
ECACL: A Holistic Framework for Semi-Supervised Domain Adaptation,
ICCV21(8558-8567)
IEEE DOI 2203
Adaptation models, Codes, Perturbation methods, Computational modeling, Data models, BibRef

Liang, J.[Jian], Hu, D.P.[Da-Peng], Feng, J.S.[Jia-Shi],
Domain Adaptation with Auxiliary Target Domain-Oriented Classifier,
CVPR21(16627-16637)
IEEE DOI 2111
Handheld computers, Semantics, Focusing, Semisupervised learning, Benchmark testing BibRef

Li, B.[Bo], Wang, Y.Z.[Ye-Zhen], Zhang, S.H.[Shang-Hang], Li, D.S.[Dong-Sheng], Keutzer, K.[Kurt], Darrell, T.J.[Trevor J.], Zhao, H.[Han],
Learning Invariant Representations and Risks for Semi-supervised Domain Adaptation,
CVPR21(1104-1113)
IEEE DOI 2111
Training, Shape, Snow, Supervised learning, Fasteners, Minimization, Classification algorithms BibRef

Kim, Y.[Yoonhyung], Kim, C.[Changick],
Semi-Supervised Domain Adaptation via Selective Pseudo Labeling and Progressive Self-Training,
ICPR21(1059-1066)
IEEE DOI 2105
Training, Semantics, Object detection, Noise robustness, Noise measurement, Reliability BibRef

Yang, L.[Luyu], Wang, Y.[Yan], Gao, M.F.[Ming-Fei], Shrivastava, A.[Abhinav], Weinberger, K.Q.[Kilian Q.], Chao, W.L.[Wei-Lun], Lim, S.N.[Ser-Nam],
Deep Co-Training with Task Decomposition for Semi-Supervised Domain Adaptation,
ICCV21(8886-8896)
IEEE DOI 2203
Training, Adaptation models, Codes, Art, Semisupervised learning, Data models, Transfer/Low-shot/Semi/Unsupervised Learning, Recognition and classification BibRef

Kim, T.[Taekyung], Kim, C.[Changick],
Attract, Perturb, and Explore: Learning a Feature Alignment Network for Semi-supervised Domain Adaptation,
ECCV20(XIV:591-607).
Springer DOI 2011
BibRef

Marini, N.[Niccolò], Otálora, S.[Sebastian], Müller, H.[Henning], Atzori, M.[Manfredo],
Semi-supervised Learning with a Teacher-Student Paradigm for Histopathology Classification: A Resource to Face Data Heterogeneity and Lack of Local Annotations,
AIDP20(105-119).
Springer DOI 2103
BibRef

Chen, L.C.[Liang-Chieh], Lopes, R.G.[Raphael Gontijo], Cheng, B.[Bowen], Collins, M.D.[Maxwell D.], Cubuk, E.D.[Ekin D.], Zoph, B.[Barret], Adam, H.[Hartwig], Shlens, J.[Jonathon],
Naive-Student: Leveraging Semi-supervised Learning in Video Sequences for Urban Scene Segmentation,
ECCV20(IX:695-714).
Springer DOI 2011
semi-supervised learning in unlabeled video sequences and extra images to improve the performance on urban scene segmentation. BibRef

He, G., Liu, X., Fan, F., You, J.,
Classification-aware Semi-supervised Domain Adaptation,
MULWS20(4147-4156)
IEEE DOI 2008
Training, Emotion recognition, Visualization, Task analysis, Reliability, Training data BibRef

Saito, K., Kim, D., Sclaroff, S., Darrell, T.J., Saenko, K.,
Semi-Supervised Domain Adaptation via Minimax Entropy,
ICCV19(8049-8057)
IEEE DOI 2004
Code, Domain Adaption.
HTML Version. convolutional neural nets, entropy, feature extraction, minimax techniques, pattern classification, supervised learning, Computational modeling BibRef

Jakubovitz, D., Rodrigues, M.R.D., Giryes, R.,
Lautum Regularization for Semi-Supervised Transfer Learning,
SDL-CV19(763-767)
IEEE DOI 2004
information theory, learning (artificial intelligence), neural nets, source dataset, deep neural network, Information Theory BibRef

Liu, P., Cheng, C., Feng, Y., Shao, X., Zhou, X.,
Semi-supervised domain adaptation via convolutional neural network,
ICIP17(2841-2845)
IEEE DOI 1803
Adaptation models, Benchmark testing, Feature extraction, Image recognition, Mathematical model, Standards, Training BibRef

Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Unsupervised Domain Adaptation .


Last update:Sep 10, 2025 at 12:00:25