Yamasaki, T.[Toshihiko],
Matsunami, T.[Tomoaki],
Chen, T.[Tuhan],
Human Attribute Analysis Using a Top-View Camera Based on Two-Stage
Classification,
IEICE(E96-D), No. 4, April 2013, pp. 993-996.
WWW Link.
1304
BibRef
Earlier: A1, A2, Only:
Pedestrian Attribute Analysis Using a Top-View Camera in a Public Space,
MMMod12(541-550).
Springer DOI
1201
BibRef
Zhu, J.Q.[Jian-Qing],
Liao, S.C.[Sheng-Cai],
Lei, Z.[Zhen],
Li, S.Z.[Stan Z.],
Multi-label convolutional neural network based pedestrian attribute
classification,
IVC(58), No. 1, 2017, pp. 224-229.
Elsevier DOI
1703
Pedestrian attribute classification
BibRef
Guo, H.[Hao],
Fan, X.C.[Xiao-Chuan],
Wang, S.[Song],
Human attribute recognition by refining attention heat map,
PRL(94), No. 1, 2017, pp. 38-45.
Elsevier DOI
1708
Human, attribute, recognition
BibRef
Tan, Z.,
Yang, Y.,
Wan, J.,
Hang, H.,
Guo, G.,
Li, S.Z.,
Attention-Based Pedestrian Attribute Analysis,
IP(28), No. 12, December 2019, pp. 6126-6140.
IEEE DOI
1909
Feature extraction, Task analysis, Deep learning,
Image recognition, Aggregates, Semantics, pedestrian parsing
BibRef
Yaghoubi, E.[Ehsan],
Borza, D.[Diana],
Neves, J.[João],
Kumar, A.[Aruna],
Proença, H.[Hugo],
An attention-based deep learning model for multiple pedestrian
attributes recognition,
IVC(102), 2020, pp. 103981.
Elsevier DOI
2010
Pedestrian attributes recognition, Multi-task learning, Visual surveillance
BibRef
Zha, Z.J.[Zheng-Jun],
Liu, J.W.[Jia-Wei],
Chen, D.[Di],
Wu, F.[Feng],
Adversarial Attribute-Text Embedding for Person Search With Natural
Language Query,
MultMed(22), No. 7, July 2020, pp. 1836-1846.
IEEE DOI
2007
Person retrieval with text query.
Visualization, Natural languages, Feature extraction, Cameras,
Semantics, Task analysis, Robustness, Person search,
graph convolution network
BibRef
Ji, Z.[Zhong],
Hu, Z.F.[Zhen-Fei],
He, E.[Erlu],
Han, J.G.[Jun-Gong],
Pang, Y.W.[Yan-Wei],
Pedestrian attribute recognition based on multiple time steps
attention,
PRL(138), 2020, pp. 170-176.
Elsevier DOI
2010
Pedestrian attribute, Attention network, Intelligent surveillance
BibRef
Wu, J.J.[Jing-Jing],
Liu, H.[Hao],
Jiang, J.G.[Jian-Guo],
Qi, M.B.[Mei-Bin],
Ren, B.[Bo],
Li, X.H.[Xiao-Hong],
Wang, Y.S.[Ya-Shen],
Person Attribute Recognition by Sequence Contextual Relation Learning,
CirSysVideo(30), No. 10, October 2020, pp. 3398-3412.
IEEE DOI
2010
Semantics, Task analysis, Feature extraction, Correlation,
Image recognition, Image sequences, Strips, Attribute recognition,
CTC loss function
BibRef
An, H.,
Hu, H.M.,
Guo, Y.,
Zhou, Q.,
Li, B.,
Hierarchical Reasoning Network for Pedestrian Attribute Recognition,
MultMed(23), 2021, pp. 268-280.
IEEE DOI
2012
Feature extraction, Cognition, Semantics, Task analysis,
Machine learning, Correlation, Image color analysis,
reason
BibRef
Ji, Z.[Zhong],
He, E.[Erlu],
Wang, H.R.[Hao-Ran],
Yang, A.P.[Ai-Ping],
Image-attribute reciprocally guided attention network for pedestrian
attribute recognition,
PRL(120), 2019, pp. 89-95.
Elsevier DOI
1904
Pedestrian attribute, Attention network, Intelligent surveillance
BibRef
Yang, Y.[Yang],
Tan, Z.C.[Zi-Chang],
Tiwari, P.[Prayag],
Pandey, H.M.[Hari Mohan],
Wan, J.[Jun],
Lei, Z.[Zhen],
Guo, G.D.[Guo-Dong],
Li, S.Z.[Stan Z.],
Cascaded Split-and-Aggregate Learning with Feature Recombination for
Pedestrian Attribute Recognition,
IJCV(129), No. 10, October 2021, pp. 2731-2744.
Springer DOI
2110
BibRef
Moghaddam, M.[Mahnaz],
Charmi, M.[Mostafa],
Hassanpoor, H.[Hossein],
Jointly human semantic parsing and attribute recognition with feature
pyramid structure in EfficientNets,
IET-IPR(15), No. 10, 2021, pp. 2281-2291.
DOI Link
2108
BibRef
Fan, H.N.[Hao-Nan],
Hu, H.M.[Hai-Miao],
Liu, S.L.[Shuai-Ling],
Lu, W.Q.[Wei-Qing],
Pu, S.L.[Shi-Liang],
Correlation Graph Convolutional Network for Pedestrian Attribute
Recognition,
MultMed(24), 2022, pp. 49-60.
IEEE DOI
2202
Correlation, Task analysis, Lighting, Image resolution, Hair,
Surveillance, Manifolds, Pedestrian Attribute Recognition,
Hierarchical Relation
BibRef
Lu, W.Q.[Wei-Qing],
Hu, H.M.[Hai-Miao],
Yu, J.Z.[Jin-Zuo],
Zhou, Y.[Yibo],
Wang, H.Z.[Han-Zi],
Li, B.[Bo],
Orientation-Aware Pedestrian Attribute Recognition Based on Graph
Convolution Network,
MultMed(26), 2024, pp. 28-40.
IEEE DOI
2401
BibRef
Fan, X.W.[Xin-Wen],
Zhang, Y.[Yukang],
Lu, Y.[Yang],
Wang, H.Z.[Han-Zi],
PARFormer: Transformer-Based Multi-Task Network for Pedestrian
Attribute Recognition,
CirSysVideo(34), No. 1, January 2024, pp. 411-423.
IEEE DOI Code:
WWW Link.
2401
BibRef
Wu, J.Y.[Jun-Yi],
Huang, Y.[Yan],
Gao, Z.P.[Zhi-Peng],
Hong, Y.T.[Ya-Ting],
Zhao, J.Q.[Jian-Qiang],
Du, X.S.[Xin-Sheng],
Inter-Attribute awareness for pedestrian attribute recognition,
PR(131), 2022, pp. 108865.
Elsevier DOI
2208
Pedestrian attribute recognition, Inter-Attribute awareness,
Vector-Neuron capsules
BibRef
Cheng, X.H.[Xin-Hua],
Jia, M.X.[Meng-Xi],
Wang, Q.[Qian],
Zhang, J.[Jian],
A Simple Visual-Textual Baseline for Pedestrian Attribute Recognition,
CirSysVideo(32), No. 10, October 2022, pp. 6994-7004.
IEEE DOI
2210
Correlation, Annotations, Visualization, Transformers, Semantics,
Training, Task analysis, Pedestrian attribute recognition, modality fusion
BibRef
Zhang, H.[Hong],
Yan, C.Q.[Chao-Qi],
Li, X.L.[Xu-Liang],
Yang, Y.F.[Yi-Fan],
Yuan, D.[Ding],
MSAGNet: Multi-Stream Attribute-Guided Network for Occluded
Pedestrian Detection,
SPLetters(29), 2022, pp. 2163-2167.
IEEE DOI
2212
Feature extraction, Detectors, Proposals, Annotations, Task analysis,
Measurement, Standards, Pedestrian detection, deep learning,
false positives
BibRef
Liu, Z.Y.[Zhen-Yu],
Zhang, Z.[Zhang],
Li, D.[Da],
Zhang, P.[Peng],
Shan, C.F.[Cai-Feng],
Dual-branch self-attention network for pedestrian attribute
recognition,
PRL(163), 2022, pp. 112-120.
Elsevier DOI
2212
Pedestrian attribute recognition, Self-attention, Second-order information
BibRef
Ji, Z.[Zhong],
Hu, Z.F.[Zhen-Fei],
Wang, Y.[Yaodong],
Shao, Z.[Zhuang],
Pang, Y.W.[Yan-Wei],
Reinforced pedestrian attribute recognition with group optimization
reward,
IVC(128), 2022, pp. 104585.
Elsevier DOI
2212
Pedestrian attribute recognition,
Intelligent video surveillance, Reinforcement learning, Deep Q-learning
BibRef
Mordan, T.[Taylor],
Cord, M.[Matthieu],
Pérez, P.[Patrick],
Alahi, A.[Alexandre],
Detecting 32 Pedestrian Attributes for Autonomous Vehicles,
ITS(23), No. 8, August 2022, pp. 11823-11835.
IEEE DOI
2208
Task analysis, Autonomous vehicles, Roads, Visualization, Training,
Safety, Urban areas, Autonomous vehicles, visual scene understanding
BibRef
Yang, P.[Peiyu],
Li, W.X.[Wei-Xi],
Wang, L.[Lu],
Xu, L.S.[Li-Sheng],
Deng, Q.X.[Qing-Xu],
Visible part prediction and temporal calibration for pedestrian
detection,
IET-IPR(17), No. 1, 2023, pp. 42-56.
DOI Link
2301
BibRef
Peng, P.R.[Pei-Ran],
Xu, T.F.[Ting-Fa],
Huang, B.[Bo],
Li, J.A.[Jian-An],
HAFNet: Hierarchical Attentive Fusion Network for Multispectral
Pedestrian Detection,
RS(15), No. 8, 2023, pp. 2041.
DOI Link
2305
BibRef
Hsu, W.Y.[Wei-Yen],
Yang, P.Y.[Pei-Yu],
Pedestrian Detection Using Multi-Scale Structure-Enhanced
Super-Resolution,
ITS(24), No. 11, November 2023, pp. 12312-12322.
IEEE DOI
2311
BibRef
Zuo, X.[Xin],
Wang, Z.[Zhi],
Shen, J.F.[Ji-Feng],
Yang, W.K.[Wan-Kou],
Improving multispectral pedestrian detection with scale-aware
permutation attention and adjacent feature aggregation,
IET-CV(17), No. 7, 2023, pp. 726-738.
DOI Link
2310
adjacent-branch feature aggregation, attention mechanism,
multi-modality feature fusion, multispectral pedestrian detection
BibRef
Cao, Y.[Yilu],
Fang, Y.C.[Yu-Chun],
Zhang, Y.F.[Yao-Fang],
Hou, X.Y.[Xiao-Yu],
Zhang, K.L.[Kun-Lin],
Huang, W.[Wei],
A novel self-boosting dual-branch model for pedestrian attribute
recognition,
SP:IC(115), 2023, pp. 116961.
Elsevier DOI
2306
Feature enhancement, Multi-scale analysis, Pedestrian attribute recognition
BibRef
Shen, J.F.[Ji-Feng],
Guo, T.[Teng],
Zuo, X.[Xin],
Fan, H.[Heng],
Yang, W.K.[Wan-Kou],
SSPNet: Scale and spatial priors guided generalizable and
interpretable pedestrian attribute recognition,
PR(148), 2024, pp. 110194.
Elsevier DOI Code:
WWW Link.
2402
Pedestrian attribute recognition, Attribute localization,
Prior knowledge, Generalizability, Interpretability
BibRef
Tan, H.[Hao],
Tan, Z.C.[Zi-Chang],
Weng, D.[Dunfang],
Liu, A.[Ajian],
Wan, J.[Jun],
Lei, Z.[Zhen],
Li, S.Z.[Stan Z.],
Vision Transformer With Relation Exploration for Pedestrian Attribute
Recognition,
MultMed(27), 2025, pp. 198-208.
IEEE DOI
2501
Feature extraction, Transformers, Pedestrians, Visualization,
Periodic structures, Correlation, Semantics, Data mining,
relation exploration
BibRef
Chen, Y.F.[Yun-Fan],
Shin, H.[Hyunchul],
Multispectral image fusion based pedestrian detection using a
multilayer fused deconvolutional single-shot detector,
JOSA-A(37), No. 5, May 2020, pp. 768-779.
DOI Link
2503
Detectors, Image enhancement, Machine vision,
Multispectral imaging, Spatial resolution, Stochastic gradient descent
BibRef
Hou, S.[Song],
Yang, M.[Meng],
Zheng, W.S.[Wei-Shi],
Gao, S.[Shibo],
MultiSpectral Transformer Fusion via exploiting similarity and
complementarity for robust pedestrian detection,
PR(162), 2025, pp. 111383.
Elsevier DOI Code:
WWW Link.
2503
Similarity and complementarity, Transformer Fusion,
Multispectral, Pedestrian detection
BibRef
Zhou, Y.[Yibo],
Li, B.[Bo],
Hu, H.M.[Hai-Miao],
Zhang, X.K.[Xiao-Kang],
Zhang, D.P.[Dong-Ping],
Wang, H.Z.[Han-Zi],
Heterogeneous Feature Re-Sampling for Balanced Pedestrian Attribute
Recognition,
PAMI(47), No. 4, April 2025, pp. 2706-2722.
IEEE DOI
2503
Training, Semantics, Pedestrians, Eigenvalues and eigenfunctions,
Noise, Computational modeling, Accuracy, Visualization,
heterogeneous feature augmentation
BibRef
Kim, T.[Taeheon],
Shin, S.[Sebin],
Yu, Y.J.[Young-Joon],
Kim, H.G.[Hak Gu],
Ro, Y.M.[Yong Man],
Causal Mode Multiplexer: A Novel Framework for Unbiased Multispectral
Pedestrian Detection,
CVPR24(26774-26783)
IEEE DOI Code:
WWW Link.
2410
Multiplexing, Training, Pedestrians, Correlation, Codes, Detectors
BibRef
Bui, D.C.[Doanh C.],
Le, T.V.[Thinh V.],
Ngo, B.H.[Ba Hung],
C2T-Net: Channel-Aware Cross-Fused Transformer-Style Networks for
Pedestrian Attribute Recognition,
RWSurvil24(351-358)
IEEE DOI Code:
WWW Link.
2404
Pedestrians, Computational modeling, Surveillance, Source coding,
Benchmark testing
BibRef
Thakare, K.V.[Kamalakar Vijay],
Dogra, D.P.[Debi Prosad],
Choi, H.[Heeseung],
Kim, H.[Haksub],
Kim, I.J.[Ig-Jae],
Let's Observe Them Over Time: An Improved Pedestrian Attribute
Recognition Approach,
WACV24(697-706)
IEEE DOI
2404
Image quality, Training, Pedestrians, Correlation, Image recognition,
Fuses, Algorithms, Image recognition and understanding, Algorithms
BibRef
Castrillón-Santana, M.[Modesto],
Sánchez-Nielsen, E.[Elena],
Freire-Obregón, D.[David],
Santana, O.J.[Oliverio J.],
Hernández-Sosa, D.[Daniel],
Lorenzo-Navarro, J.[Javier],
Evaluation of a Visual Question Answering Architecture for Pedestrian
Attribute Recognition,
CAIP23(I:13-22).
Springer DOI
2312
BibRef
Greco, A.[Antonio],
Vento, B.[Bruno],
PAR Contest 2023:
Pedestrian Attributes Recognition with Multi-task Learning,
CAIP23(I:3-12).
Springer DOI
2312
BibRef
Specker, A.[Andreas],
Cormier, M.[Mickael],
Beyerer, J.[Jürgen],
UPAR: Unified Pedestrian Attribute Recognition and Person Retrieval,
WACV23(981-990)
IEEE DOI
2302
Systematics, Image recognition, Annotations, Lighting,
Video surveillance, Artificial intelligence,
visual reasoning)
BibRef
Cormier, M.[Mickael],
Specker, A.[Andreas],
Jacques, J.C.S.[Julio C. S.],
Moritz, L.[Lennart],
Metzler, J.[Jürgen],
Moeslund, T.B.[Thomas B.],
Nasrollahi, K.[Kamal],
Escalera, S.[Sergio],
Beyerer, J.[Jürgen],
UPAR Challenge 2024: Pedestrian Attribute Recognition and
Attribute-Based Person Retrieval - Dataset, Design, and Results,
RWSurvil24(359-367)
IEEE DOI Code:
WWW Link.
2404
Measurement, Training, Pedestrians, Protocols, Annotations,
Smart cities, Surveillance
BibRef
Cormier, M.[Mickael],
Specker, A.[Andreas],
Jacques, J.C.S.[Julio C. S.],
Florin, L.[Lucas],
Metzler, J.[Jürgen],
Moeslund, T.B.[Thomas B.],
Nasrollahi, K.[Kamal],
Escalera, S.[Sergio],
Beyerer, J.[Jürgen],
UPAR Challenge: Pedestrian Attribute Recognition and Attribute-based
Person Retrieval - Dataset, Design, and Results,
RealWorld23(166-175)
IEEE DOI
2302
Training, Resistance, Protocols, Annotations, Surveillance,
Training data, Transformers
BibRef
Zheng, X.Q.[Xiao-Qiang],
Yu, Z.X.[Zhen-Xia],
Chen, L.[Lin],
Zhu, F.[Fan],
Wang, S.L.[Shi-Long],
Multi-label Contrastive Focal Loss for Pedestrian Attribute
Recognition,
ICPR21(7349-7356)
IEEE DOI
2105
Training, Visualization, Force, Complex networks, Feature extraction,
Convolutional neural networks,
Metrics Learning
BibRef
Aggarwal, S.[Surbhi],
Babu, R.V.[R. Venkatesh],
Chakraborty, A.[Anirban],
Text-based Person Search via Attribute-aided Matching,
WACV20(2606-2614)
IEEE DOI
2006
pedestrian images that best match a given text query.
Feature extraction, Semantics, Task analysis, Training, Footwear, Visualization
BibRef
Gao, D.,
Wu, Z.,
Zhang, W.,
Safe-Net: Solid and Abstract Feature Extraction Network for
Pedestrian Attribute Recognition,
ICIP19(1655-1659)
IEEE DOI
1910
Pedestrian Attribute, GAN, Image Segmentation
BibRef
Tang, C.F.[Chu-Feng],
Sheng, L.[Lu],
Zhang, Z.X.[Zhao-Xiang],
Hu, X.L.[Xiao-Lin],
Improving Pedestrian Attribute Recognition With Weakly-Supervised
Multi-Scale Attribute-Specific Localization,
ICCV19(4996-5005)
IEEE DOI
2004
image representation, learning (artificial intelligence),
pedestrians, video surveillance
BibRef
He, X.T.[Xing-Ting],
Shi, Q.Y.[Qiu-Yue],
Su, F.[Fei],
Zhao, Z.C.[Zhi-Cheng],
Zhuang, B.[Bojin],
Pedestrian Attribute Recognition Based on Mtcnn with Online Batch
Weighted Loss,
ICIP19(2461-2465)
IEEE DOI
1910
Pedestrian Attribute Recognition, Grouping, CNN,
Multi-task Learning, Online Batch Weighted Loss
BibRef
Wang, J.Y.[Jing-Ya],
Zhu, X.T.[Xia-Tian],
Gong, S.G.[Shao-Gang],
Li, W.[Wei],
Attribute Recognition by Joint Recurrent Learning of Context and
Correlation,
ICCV17(531-540)
IEEE DOI
1802
few training samples, noise, clutter. Pedestrians.
image colour analysis,
learning (artificial intelligence), object detection,
Surveillance
BibRef
Ji, Z.,
Zheng, W.,
Pang, Y.,
Deep pedestrian attribute recognition based on LSTM,
ICIP17(151-155)
IEEE DOI
1803
Attribute prediction, LSTM, Pedestrian attribute recognition,
Visual surveillance.
BibRef
Zhu, J.Q.[Jian-Qing],
Liao, S.C.[Sheng-Cai],
Lei, Z.[Zhen],
Li, S.Z.[Stan Z.],
Improve Pedestrian Attribute Classification by Weighted Interactions
from Other Attributes,
HIS14(545-557).
Springer DOI
1504
BibRef
Zhu, J.Q.[Jian-Qing],
Liao, S.C.[Sheng-Cai],
Lei, Z.[Zhen],
Yi, D.[Dong],
Li, S.Z.,
Pedestrian Attribute Classification in Surveillance:
Database and Evaluation,
LSVSM13(331-338)
IEEE DOI
1403
feature extraction
BibRef
Chapter on Motion -- Human Motion, Surveillance, Tracking, Surveillance, Activities continues in
Surveys, Evaluation, Datasets, Human Detection, People Detection, Pedestrians .