22.1.28.1 GNSS applied to Atmospheric, Water Vapor, Precipitable Water Vapor, PWV

Chapter Contents (Back)
GNSS. Water Vapor.
See also Atmospheric, Water Vapor, Precipitable Water Vapor, PWV.

Antonini, A., Benedetti, R., Ortolani, A., Rovai, L., Schiavon, G.,
Water Vapor Probabilistic Retrieval Using GNSS Signals,
GeoRS(52), No. 3, March 2014, pp. 1892-1900.
IEEE DOI 1403
atmospheric humidity BibRef

Li, X.X.[Xing-Xing], Dick, G., Lu, C.X.[Cui-Xian], Ge, M., Nilsson, T., Ning, T.[Tong], Wickert, J., Schuh, H.,
Multi-GNSS Meteorology: Real-Time Retrieving of Atmospheric Water Vapor from BeiDou, Galileo, GLONASS, and GPS Observations,
GeoRS(53), No. 12, December 2015, pp. 6385-6393.
IEEE DOI 1512
atmospheric humidity
See also Real-Time Tropospheric Delays Retrieved from Multi-GNSS Observations and IGS Real-Time Product Streams. BibRef

Alshawaf, F., Fuhrmann, T., Knopfler, A., Luo, X., Mayer, M., Hinz, S., Heck, B.,
Accurate Estimation of Atmospheric Water Vapor Using GNSS Observations and Surface Meteorological Data,
GeoRS(53), No. 7, July 2015, pp. 3764-3771.
IEEE DOI 1503
Atmospheric measurements BibRef

Mateus, P., Catal„o, J., Nico, G.,
Sentinel-1 Interferometric SAR Mapping of Precipitable Water Vapor Over a Country-Spanning Area,
GeoRS(55), No. 5, May 2017, pp. 2993-2999.
IEEE DOI 1705
atmospheric humidity, data assimilation, radar interferometry, remote sensing by radar, satellite navigation, synthetic aperture radar, GNSS measurement, Iberian Peninsula, SAR meteorology, Sentinel-1 Interferometric SAR mapping, Sentinel-1A SAR images, atmosphere precipitable water vapor, country-spanning area, global navigation satellite system, interferometric SAR data assimilation, interferometric Sentinel-1A-B C-band synthetic aperture radar data, numerical weather model, Atmosphere, Delays, Image segmentation, Meteorology, Sensors, Spatial resolution, Synthetic aperture radar, Global navigation satellite system (GNSS), BibRef

Zhang, B.[Bao], Fan, Q.B.[Qing-Biao], Yao, Y.B.[Yi-Bin], Xu, C.J.[Cai-Jun], Li, X.X.[Xing-Xing],
An Improved Tomography Approach Based on Adaptive Smoothing and Ground Meteorological Observations,
RS(9), No. 9, 2017, pp. xx-yy.
DOI Link 1711
GNSS for water vapor. BibRef

Chen, Z.P.[Zhi-Ping], Li, J.C.[Jian-Cheng], Luo, J.[Jia], Cao, X.Y.[Xin-Yun],
A New Strategy for Extracting ENSO Related Signals in the Troposphere and Lower Stratosphere from GNSS RO Specific Humidity Observations,
RS(10), No. 4, 2018, pp. xx-yy.
DOI Link 1805
BibRef

Krietemeyer, A.[Andreas], ten Veldhuis, M.C.[Marie-Claire], van der Marel, H.[Hans], Realini, E.[Eugenio], van de Giesen, N.[Nick],
Potential of Cost-Efficient Single Frequency GNSS Receivers for Water Vapor Monitoring,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link 1810
BibRef

Benevides, P.[Pedro], Catalao, J.[Joao], Nico, G.[Giovanni],
Neural Network Approach to Forecast Hourly Intense Rainfall Using GNSS Precipitable Water Vapor and Meteorological Sensors,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Yang, F.[Fei], Guo, J.M.[Ji-Ming], Meng, X.L.[Xiao-Lin], Shi, J.B.[Jun-Bo], Zhou, L.[Lv],
Establishment and Assessment of a New GNSS Precipitable Water Vapor Interpolation Scheme Based on the GPT2w Model,
RS(11), No. 9, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Baldysz, Z.[Zofia], Nykiel, G.[Grzegorz],
Improved Empirical Coefficients for Estimating Water Vapor Weighted Mean Temperature over Europe for GNSS Applications,
RS(11), No. 17, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Mota, G.V.[Galdino V.], Song, S.[Shuli], Stepniak, K.[Katarzyna],
Assessment of Integrated Water Vapor Estimates from the iGMAS and the Brazilian Network GNSS Ground-Based Receivers in Rio de Janeiro,
RS(11), No. 22, 2019, pp. xx-yy.
DOI Link 1911
BibRef

Wang, S.M.[Shuai-Min], Xu, T.[Tianhe], Nie, W.F.[Wen-Feng], Jiang, C.H.[Chun-Hua], Yang, Y.G.[Yu-Guo], Fang, Z.L.[Zhen-Long], Li, M.[Mowen], Zhang, Z.[Zhen],
Evaluation of Precipitable Water Vapor from Five Reanalysis Products with Ground-Based GNSS Observations,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link 2006
BibRef

Yao, Y.[Yibin], Liu, C.[Chen], Xu, C.Q.[Chao-Qian],
A New GNSS-Derived Water Vapor Tomography Method Based on Optimized Voxel for Large GNSS Network,
RS(12), No. 14, 2020, pp. xx-yy.
DOI Link 2007
BibRef

Yao, Y.B.[Yi-Bin], Liu, C.[Chen], Xu, C.Q.[Chao-Qian], Tan, Y.[Yu], Fang, M.[Mingshan],
A Refined Tomographic Window for GNSS-Derived Water Vapor Tomography,
RS(12), No. 18, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Mertikas, S.[Stelios], Partsinevelos, P.[Panagiotis], Tripolitsiotis, A.[Achilleas], Kokolakis, C.[Costas], Petrakis, G.[George], Frantzis, X.[Xenophon],
Validation of Sentinel-3 OLCI Integrated Water Vapor Products Using Regional GNSS Measurements in Crete, Greece,
RS(12), No. 16, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Li, H.[Haobo], Wang, X.M.[Xiao-Ming], Wu, S.[Suqin], Zhang, K.[Kefei], Fu, E.[Erjiang], Xu, Y.[Ying], Qiu, C.[Cong], Zhang, J.[Jinglei], Li, L.[Li],
A New Method for Determining an Optimal Diurnal Threshold of GNSS Precipitable Water Vapor for Precipitation Forecasting,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Wu, M.L.[Ming-Liang], Jin, S.G.[Shuang-Gen], Li, Z.C.[Zhi-Cai], Cao, Y.C.[Yun-Chang], Ping, F.[Fan], Tang, X.[Xu],
High-Precision GNSS PWV and Its Variation Characteristics in China Based on Individual Station Meteorological Data,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Gong, Y.Z.[Yang-Zhao], Liu, Z.Z.[Zhi-Zhao],
Evaluating the Accuracy of Jason-3 Water Vapor Product Using PWV Data From Global Radiosonde and GNSS Stations,
GeoRS(59), No. 5, May 2021, pp. 4008-4017.
IEEE DOI 2104
Microwave radiometry, Global navigation satellite system, Satellite broadcasting, Altimetry, Sea measurements, radiosonde BibRef


Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Atmospheric, Dust, Dust Storms, Volcanic Ash, Remote Sensing .


Last update:Jun 21, 2021 at 13:48:20