9.5.2 Grid Patterns

Chapter Contents (Back)
Shape from Grid Patterns. Structured Light, Grid.

Wang, Y.F., Mitiche, A., and Aggarwal, J.K.,
Computation of Surface Orientation and Structure of Objects Using Grid Coding,
PAMI(9), No. 1, January 1987, pp. 129-137. BibRef 8701
Inferring Local Surface Orientation with the Aid of Grid Coding,
CVWS85(96-104). The surface orientation at the grid intersections is determined from the angle. Dense orientations can be derived by interpolation. For later work there is a preliminary paper See also New Method for Computing Intrinsic Surface Properties, A. BibRef

Wang, Y.F., and Pandey, A.[Arvind],
A Study on Using Structured Lighting to Analyze Time Varying Image Sequences,
PR(24), No. 8, 1991, pp. 723-738.
Elsevier DOI BibRef 9100

Shrikhande, N., and Stockman, G.C.,
Surface Orientation from a Projection Grid,
PAMI(11), No. 6, June 1989, pp. 650-655.
IEEE DOI Grid pattern lights. See also the paper with Hu, below. BibRef 8906

Guisser, L., Payrissat, R., and Castan, S.,
A New 3-D Surface Measurement System Using a Structured Light,
IEEE DOI Grid based on independent families of curves rather than simple rectangular grid. BibRef 9200

Hu, G.[Gongzhu], and Stockman, G.C.,
3-D Surface Solution Using Structured Light and Constraint Propagation,
PAMI(11), No. 4, April 1989, pp. 390-402.
IEEE DOI BibRef 8904
Earlier: A2, A1:
Sensing 3-D Surface patches Using a Projected Grid,
CVPR86(602-607). BibRef
3-D Surface Sensing Using a Projected Grid,
MSUTech. Report, 1985. A complete system that uses structured light for depth (a grid pattern). This seems to be overkill given the simple techniques that work. BibRef

Hu, G.[Gongzhu], Jain, A.K., and Stockman, G.C.,
Shape from Light Stripe Texture,
CVPR86(412-414). Looking at the features of the light stripe patterns. BibRef 8600

Nurre, J.H.[Joseph H.], Hall, E.L.[Ernest L.],
Encoding Grid Generation from a Computer Solid Model,
CVGIP(56), No. 2, September 1992, pp. 131-138.
Elsevier DOI An investigation and analysis of generating structured light grid patterns for 3-D extaction. BibRef 9209

Nurre, J.H.[Joseph H.], Hall, E.L.[Ernest L.], Roning, J.J.,
Acquiring Simple Patterns for Surface Inspection,
IEEE DOI BibRef 8800

Potmesil, M.[Michael],
Generation of 3D Surface Descriptions from Images of Pattern Illuminated Objects,
PRIP79(553-560). See also Generating Octree Models of 3D Objects from Their Silhouettes in a Sequence of Images. BibRef 7900

Will, P.M., and Pennington, K.S.,
Grid Coding: A Novel Technique for Image Processing,
PIEEE(60), No. 6, June 1972, pp. 669-680. BibRef 7206

Will, P.M., and Pennington, K.S.,
Grid Coding: A Preprocessing Technique for Robot and Machine Vision,
AI(2), No. 3-4, Winter 1971, pp. 319-329.
Elsevier DOI BibRef 7100
And: IJCAI71(xx-yy). BibRef
And: IBMRC 3370. April 1971. BibRef

Vogel, J.H.[Jeffrey H.], Lee, D.Y.[Dae-Yong],
Computerized method of determining surface strain distributions in a deformed body,
US_Patent4,969,106, Nov 6, 1990
WWW Link. Project a grid, 2 cameras BibRef 9011

Mizutani, H.[Hideo],
Surface position detection apparatus,
US_Patent5,633,721, May 27, 1997
WWW Link. BibRef 9705

Chia, T.L., Chen, Z., Yueh, C.J.,
A Method for Rectifying Grid Junctions in Grid-Coded Images Using Cross Ratio,
IP(5), No. 8, August 1996, pp. 1276-1281.
Curved Surface Reconstruction Using a Simple Structured Light Method,
ICPR96(I: 844-848).
(National Chiao Tung Univ., ROC) BibRef

Guisser, L., Payrissat, R., Castan, S.,
PGSD: an accurate 3D vision system using a projected grid for surface descriptions,
IVC(18), No. 6-7, 1 May 2000, pp. 463-491.
Elsevier DOI 0003

Savarese, S.[Silvio], Chen, M.[Min], Perona, P.[Pietro],
Local Shape from Mirror Reflections,
IJCV(64), No. 1, August 2005, pp. 31-67.
Springer DOI 0506
Recovering Local Shape of a Mirror Surface from Reflection of a Regular Grid,
ECCV04(Vol III: 468-481).
Springer DOI 0405
Variation on structured light, except use reflection of a pattern. BibRef

Song, Z.[Zhan], Chung, R.[Ronald],
Nonstructured light-based sensing for 3D reconstruction,
PR(43), No. 10, October 2010, pp. 3560-3571.
Elsevier DOI 1007
Grid point extraction exploiting point symmetry in a pseudo-random color pattern,
Structured light-based sensing; Surface normal; Orientation map; Depth map BibRef

Song, Z.[Zhan], Chung, R.[Ronald],
Determining Both Surface Position and Orientation in Structured-Light-Based Sensing,
PAMI(32), No. 10, October 2010, pp. 1770-1780.
3D Shape Recovery by the Use of Single Image Plus Simple Pattern Illumination,
ISVC07(I: 268-277).
Springer DOI 0711
Using suitable pseudo random pattern and feature points can determine the position and the orientation of features. Both with a single pattern and a single image. BibRef

Dai, J.W.[Jing-Wen], Chung, R.[Ronald],
Sensitivity evaluation of embedded code detection in imperceptible structured light sensing,

Kim, H.[Harksu], Kim, D.[Dongtaek], Lee, J.[Jaeeung], Chai, Y.[Youngho],
Real-Time Spatial Surface Modeling System Using Wand Traversal Patterns of Grid Edges,
IEICE(E94-D), No. 8, August 2011, pp. 1620-1627.
WWW Link. 1108

Porikli, F.M.,
Stripe Mesh Based Disparity Estimation by Using 3D Hough Transform,
ICIP97(III: 240-243).

Kamei, K., Maruyama, M., and Seo, K.,
Scene Synthesis by Assembling Striped Areas of Source Images,
ICIP97(II: 482-485).
IEEE DOI BibRef 9700

Keizer, R.L., Dunn, S.M.,
Marked Grid Labeling,
IEEE DOI BibRef 8900

Chapter on 3-D Shape from X -- Shading, Textures, Lasers, Structured Light, Focus, Line Drawings continues in
Optical Interferometry, Moire Patterns .

Last update:Feb 26, 2018 at 13:41:56