8.6.1.1 Counting Instances, Counting Objects

Chapter Contents (Back)
Instance Segmentation. Counting. Count Objects.
See also Vehicle Counting.
See also Counting People, Transportation System Monitoring, Queues.
See also Counting People, Crowds, Crowd Counting.
See also Dense Object Detection.

Wolf, C.[Christian], Jolion, J.M.[Jean-Michel],
Object count/area graphs for the evaluation of object detection and segmentation algorithms,
IJDAR(8), No. 4, September 2006, pp. 280-296.
Springer DOI 0609
BibRef

Wang, Y., Zou, Y., Wang, W.,
Manifold-Based Visual Object Counting,
IP(27), No. 7, July 2018, pp. 3248-3263.
IEEE DOI 1805
image classification, image reconstruction, image representation, image resolution, object density map estimation BibRef

Stahl, T., Pintea, S.L., van Gemert, J.C.,
Divide and Count: Generic Object Counting by Image Divisions,
IP(28), No. 2, February 2019, pp. 1035-1044.
IEEE DOI 1811
Proposals, Computer architecture, Task analysis, Automobiles, Animals, Object detection, Generic-class object counting, counting with region proposals BibRef

Zhang, S.H.[Shi-Hui], Li, H.[He], Kong, W.H.[Wei-Hang],
Object counting method based on dual attention network,
IET-IPR(14), No. 8, 19 June 2020, pp. 1621-1627.
DOI Link 2005
BibRef

Li, H.[He], Zhang, S.H.[Shi-Hui], Kong, W.H.[Wei-Hang],
Bilateral counting network for single-image object counting,
VC(36), No. 8, August 2020, pp. 1693-1704.
WWW Link. 2007
BibRef

Liu, L., Lu, H., Xiong, H., Xian, K., Cao, Z., Shen, C.,
Counting Objects by Blockwise Classification,
CirSysVideo(30), No. 10, October 2020, pp. 3513-3527.
IEEE DOI 2010
Kernel, Nonhomogeneous media, Task analysis, Feature extraction, Quantization (signal), Convolutional neural networks, count-level classification BibRef

Xu, C.[Can], Yuen, P.[Peter], Lang, W.X.[Wen-Xi], Xin, R.[Rui], Mao, K.[Kaichen], Jiang, H.Y.[Hai-Yan],
Generative detect for occlusion object based on occlusion generation and feature completing,
JVCIR(78), 2021, pp. 103189.
Elsevier DOI 2107
BibRef
And: A1, A3, A4, A5, A6, Only: Corrigendum: JVCIR(93), 2023, pp. 103809.
Elsevier DOI 2305
Apply it to the in-filed Rice Panicles Counting. Occlusion, Object detection, Feature completing, Generative adversarial networks BibRef

Xu, W.[Wei], Liang, D.K.[Ding-Kang], Zheng, Y.X.[Yi-Xiao], Xie, J.H.[Jia-Hao], Ma, Z.Y.[Zhan-Yu],
Dilated-Scale-Aware Category-Attention ConvNet for Multi-Class Object Counting,
SPLetters(28), 2021, pp. 1570-1574.
IEEE DOI 2108
Annotations, Feature extraction, Task analysis, Convolution, Automobiles, Training, Visualization, Multi-class object counting, category-attention module BibRef

Cholakkal, H.[Hisham], Sun, G.[Guolei], Khan, S.[Salman], Khan, F.S.[Fahad Shahbaz], Shao, L.[Ling], Van Gool, L.J.[Luc J.],
Towards Partial Supervision for Generic Object Counting in Natural Scenes,
PAMI(44), No. 3, March 2022, pp. 1604-1622.
IEEE DOI 2202
Visualization, Genomics, Bioinformatics, Image segmentation, Modulation, Sun, Graphical models, Generic object counting, weakly supervised instance segmentation BibRef

Wan, J.[Jia], Wang, Q.Z.[Qing-Zhong], Chan, A.B.[Antoni B.],
Kernel-Based Density Map Generation for Dense Object Counting,
PAMI(44), No. 3, March 2022, pp. 1357-1370.
IEEE DOI 2202
Kernel, Estimation, Feature extraction, Generators, Task analysis, Prediction algorithms, Bandwidth, Crowd counting, vehicle counting, deep learning BibRef

Tang, M.Y.[Meng-Yi], Yashtini, M.[Maryam], Kang, S.H.[Sung Ha],
Counting Objects by Diffused Index: Geometry-free and training-free approach,
JVCIR(86), 2022, pp. 103527.
Elsevier DOI 2206
Object counting, Variational analysis, Alternating minimization, Fast methods, Clustering, Convergence analysis BibRef

Moon, J.[Jiwon], Lim, S.[Sangkyu], Lee, H.[Hakjun], Yu, S.[Seungbum], Lee, K.B.[Ki-Baek],
Smart Count System Based on Object Detection Using Deep Learning,
RS(14), No. 15, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Gao, J.Y.[Jun-Yu], Gong, M.[Maoguo], Li, X.L.[Xue-Long],
Global Multi-Scale Information Fusion for Multi-Class Object Counting in Remote Sensing Images,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Guo, X.Y.[Xiang-Yu], Anisetti, M.[Marco], Gao, M.L.[Ming-Liang], Jeon, G.G.[Gwang-Gil],
Object Counting in Remote Sensing via Triple Attention and Scale-Aware Network,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
BibRef

McCarthy, T.[Tadhg], Virtusio, J.J.[John Jethro], Ople, J.J.M.[Jose Jaena Mari], Tan, D.S.[Daniel Stanley], Amalin, D.[Divina], Hua, K.L.[Kai-Lung],
MACnet: Mask augmented counting network for class-agnostic counting,
PRL(169), 2023, pp. 75-80.
Elsevier DOI 2305
Class-agnostic counting, Extreme points, Segmentation masks BibRef


Jenkins, P.[Porter], Armstrong, K.[Kyle], Nelson, S.[Stephen], Gotad, S.[Siddhesh], Jenkins, J.S.[J. Stockton], Wilkey, W.[Wade], Watts, T.[Tanner],
CountNet3D: A 3D Computer Vision Approach to Infer Counts of Occluded Objects,
WACV23(3007-3016)
IEEE DOI 2302
Point cloud compression, Location awareness, Detectors, Object detection, Inventory management, visual reasoning BibRef

You, Z.Y.[Zhi-Yuan], Yang, K.[Kai], Luo, W.H.[Wen-Han], Lu, X.[Xin], Cui, L.[Lei], Le, X.[Xinyi],
Few-shot Object Counting with Similarity-Aware Feature Enhancement,
WACV23(6304-6313)
IEEE DOI 2302
Training, Image recognition, Target recognition, Focusing, Benchmark testing, Finite element analysis BibRef

Li, L.M.[Li-Ming], Song, S.[Sanming], Wang, L.[Li], Ye, L.[Lei], Jing, Y.[Yan], Pang, G.[Guofu],
Feature Evaluation for Underwater Acoustic Object Counting and F0 Estimation,
ICRVC22(180-185)
IEEE DOI 2301
Shafts, Time-frequency analysis, Source separation, Time series analysis, Estimation, Object detection, Lakes, F0 estimation BibRef

Xiong, H.P.[Hai-Peng], Yao, A.[Angela],
Discrete-Constrained Regression for Local Counting Models,
ECCV22(XXIV:621-636).
Springer DOI 2211
BibRef

Nguyen, T.[Thanh], Pham, C.[Chau], Nguyen, K.[Khoi], Hoai, M.[Minh],
Few-Shot Object Counting and Detection,
ECCV22(XX:348-365).
Springer DOI 2211
BibRef

Gong, S.J.[Shen-Jian], Zhang, S.S.[Shan-Shan], Yang, J.[Jian], Dai, D.X.[Deng-Xin], Schiele, B.[Bernt],
Class-Agnostic Object Counting Robust to Intraclass Diversity,
ECCV22(XXXIII:388-403).
Springer DOI 2211
BibRef

Ranjan, V.[Viresh], Hoai, M.[Minh],
Vicinal Counting Networks,
L3D-IVU22(4220-4229)
IEEE DOI 2210
Training, Visualization, Buildings, Training data, Generators BibRef

Han, T.[Tao], Bai, L.[Lei], Gao, J.Y.[Jun-Yu], Wang, Q.[Qi], Ouyang, W.L.[Wan-Li],
DR.VIC: Decomposition and Reasoning for Video Individual Counting,
CVPR22(3073-3082)
IEEE DOI 2210
Codes, Annotations, Estimation, Manuals, Cognition, Pattern recognition, Video analysis and understanding, Scene analysis and understanding BibRef

Shi, M.[Min], Lu, H.[Hao], Feng, C.[Chen], Liu, C.X.[Cheng-Xin], Cao, Z.G.[Zhi-Guo],
Represent, Compare, and Learn: A Similarity-Aware Framework for Class-Agnostic Counting,
CVPR22(9519-9528)
IEEE DOI 2210
Visualization, Computational modeling, Pipelines, Feature extraction, Robustness, Power capacitors, retrieval BibRef

Cheng, Z.Q.[Zhi-Qi], Dai, Q.[Qi], Li, H.[Hong], Song, J.K.[Jing-Kuan], Wu, X.[Xiao], Hauptmann, A.G.[Alexander G.],
Rethinking Spatial Invariance of Convolutional Networks for Object Counting,
CVPR22(19606-19616)
IEEE DOI 2210
Convolution, Annotations, Benchmark testing, Feature extraction, Pattern recognition, Kernel, Scene analysis and understanding, Vision applications and systems BibRef

Michel, A.[Andreas], Gross, W.[Wolfgang], Schenkel, F.[Fabian], Middelmann, W.[Wolfgang],
Class-aware Object Counting,
RWSurvil22(469-478)
IEEE DOI 2202
Conferences, Estimation, Object detection, Detectors BibRef

Huberman-Spiegelglas, I.[Inbar], Fattal, R.[Raanan],
Single Image Object Counting and Localizing using Active-Learning,
WACV22(3717-3726)
IEEE DOI 2202
Training, Manifolds, Location awareness, Visualization, Surveillance, Microscopy, Lighting, Semi- and Un- supervised Learning BibRef

Yang, S.D.[Shuo-Diao], Su, H.T.[Hung-Ting], Hsu, W.H.[Winston H.], Chen, W.C.[Wen-Chin],
Class-agnostic Few-shot Object Counting,
WACV21(869-877)
IEEE DOI 2106
Training, Computational modeling, Force, Data collection, Data models BibRef

Chen, F.[Feng], Pound, M.P.[Michael P.], French, A.P.[Andrew P.],
Learning to Localise and Count with Incomplete Dot-Annotations,
ILDAV21(1612-1620)
IEEE DOI 2112
Training, Heating systems, Head, Annotations, Training data, Semisupervised learning, Fatigue BibRef

Godi, M.[Marco], Joppi, C.[Christian], Giachetti, A.[Andrea], Cristani, M.[Marco],
SIMCO: SIMilarity-based object COunting,
ICPR21(47-52)
IEEE DOI 2105
Training, Head, Shape, Image color analysis, Annotations, Benchmark testing, Pattern recognition BibRef

Laradji, I.H., Pardinas, R., Rodriguez, P., Vazquez, D.,
LOOC: Localize Overlapping Objects with Count Supervision,
ICIP20(2316-2320)
IEEE DOI 2011
Proposals, Training, Games, Task analysis, Object recognition, Generators, Videos, localization, counting, weakly supervised BibRef

Yang, Y., Li, G., Wu, Z., Su, L., Huang, Q., Sebe, N.,
Reverse Perspective Network for Perspective-Aware Object Counting,
CVPR20(4373-4382)
IEEE DOI 2008
Distortion, Training, Feature extraction, Estimation, Convolution, Kernel, Adaptation models BibRef

Xiong, H., Lu, H., Liu, C., Liu, L., Cao, Z., Shen, C.,
From Open Set to Closed Set: Counting Objects by Spatial Divide-and-Conquer,
ICCV19(8361-8370)
IEEE DOI 2004
Code, Counting.
WWW Link. divide and conquer methods, image processing, learning (artificial intelligence), neural nets, Estimation BibRef

Shi, Z.L.[Zeng-Lin], Mettes, P.S.[Pascal S.], Snoek, C.G.M.[Cees G. M.],
Counting With Focus for Free,
ICCV19(4199-4208)
IEEE DOI 2004
Code, Counting.
WWW Link. convolutional neural nets, image segmentation, network theory (graphs), object detection, supervised learning, Convolution BibRef

Zhao, M.M.[Mu-Ming], Zhang, J.[Jian], Zhang, C.Y.[Chong-Yang], Zhang, W.J.[Wen-Jun],
Towards Locally Consistent Object Counting with Constrained Multi-stage Convolutional Neural Networks,
ACCV18(VI:247-261).
Springer DOI 1906
BibRef

Ren, M.Y.[Meng-Ye], Zemel, R.S.[Richard S.],
End-to-End Instance Segmentation with Recurrent Attention,
CVPR17(293-301)
IEEE DOI 1711
Computational modeling, Convolution, Image segmentation, Indexes, Training. Counting. BibRef

Chattopadhyay, P., Vedantam, R., Selvaraju, R.R., Batra, D., Parikh, D.,
Counting Everyday Objects in Everyday Scenes,
CVPR17(4428-4437)
IEEE DOI 1711
Detectors, Feature extraction, Knowledge discovery, Object detection, Surveillance, Visualization BibRef

Fiaschi, L.[Luca], Koethe, U.[Ullrich], Nair, R.[Rahul], Hamprecht, F.A.[Fred A.],
Learning to count with regression forest and structured labels,
ICPR12(2685-2688).
WWW Link. 1302
count instances BibRef

Yu, L.[Li], Hoover, A.[Adam],
Threshold Selection as a Function of Region Count Stability,
PercOrg04(59).
IEEE DOI 0502
BibRef

Ancin, H., Dufresne, T.E., Ridder, G.M., Turner, J.N., Roysam, B.,
An improved watershed algorithm for counting objects in noisy, anisotropic 3-D biological images,
ICIP95(III: 172-175).
IEEE DOI 9510
BibRef

Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Panoptic Segmentation .


Last update:Jun 1, 2023 at 10:05:03