Fu, S.[Sichao],
Liu, W.F.[Wei-Feng],
Li, S.Y.[Shu-Ying],
Zhou, Y.C.[Yi-Cong],
Two-order graph convolutional networks for semi-supervised
classification,
IET-IPR(13), No. 14, 12 December 2019, pp. 2763-2771.
DOI Link
1912
BibRef
Zhang, Z.H.[Zhi-Hong],
Chen, D.D.[Dong-Dong],
Wang, J.J.[Jian-Jia],
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Quantum-based subgraph convolutional neural networks,
PR(88), 2019, pp. 38-49.
Elsevier DOI
1901
Graph convolutional neural networks, Spatial construction,
Quantum walks, Subgraph
BibRef
Xu, C.Y.[Chuan-Yu],
Wang, D.[Dong],
Zhang, Z.H.[Zhi-Hong],
Wang, B.[Beizhan],
Zhou, D.[Da],
Ren, G.J.[Gui-Jun],
Bai, L.[Lu],
Cui, L.X.[Li-Xin],
Hancock, E.R.[Edwin R.],
Depth-based Subgraph Convolutional Neural Networks,
ICPR18(1024-1029)
IEEE DOI
1812
Convolution, Feature extraction, Convolutional neural networks,
Standards, Task analysis, Data mining, Laplace equations
BibRef
Zhang, Z.H.[Zhi-Hong],
Chen, D.D.[Dong-Dong],
Wang, Z.[Zeli],
Li, H.[Heng],
Bai, L.[Lu],
Hancock, E.R.[Edwin R.],
Depth-based subgraph convolutional auto-encoder for network
representation learning,
PR(90), 2019, pp. 363-376.
Elsevier DOI
1903
Graph based CNN style learning.
Network representation learning,
Graph convolutional neural network, Node classification
BibRef
Chen, Y.X.[Yu-Xin],
Ma, G.[Gaoqun],
Yuan, C.F.[Chun-Feng],
Li, B.[Bing],
Zhang, H.[Hui],
Wang, F.[Fangshi],
Hu, W.M.[Wei-Ming],
Graph convolutional network with structure pooling and joint-wise
channel attention for action recognition,
PR(103), 2020, pp. 107321.
Elsevier DOI
2005
Graph convolutional network, Structure graph pooling,
Joint-wise channel attention
BibRef
Wan, S.[Sheng],
Gong, C.[Chen],
Zhong, P.[Ping],
Du, B.[Bo],
Zhang, L.F.[Le-Fei],
Yang, J.[Jian],
Multiscale Dynamic Graph Convolutional Network for Hyperspectral
Image Classification,
GeoRS(58), No. 5, May 2020, pp. 3162-3177.
IEEE DOI
2005
Hyperspectral imaging, Convolution, Feature extraction, Kernel,
Support vector machines, Training, Dynamic graph,
multiscale information
BibRef
Wan, S.[Sheng],
Gong, C.[Chen],
Zhong, P.[Ping],
Pan, S.R.[Shi-Rui],
Li, G.Y.[Guang-Yu],
Yang, J.[Jian],
Hyperspectral Image Classification With Context-Aware Dynamic Graph
Convolutional Network,
GeoRS(59), No. 1, January 2021, pp. 597-612.
IEEE DOI
2012
Image edge detection, Feature extraction, Hyperspectral imaging,
Nonhomogeneous media, Electronic mail, Data mining,
hyperspectral image~(HIS) classification
BibRef
Luo, Y.[Yawei],
Ji, R.R.[Rong-Rong],
Guan, T.[Tao],
Yu, J.Q.[Jun-Qing],
Liu, P.[Ping],
Yang, Y.[Yi],
Every node counts: Self-ensembling graph convolutional networks for
semi-supervised learning,
PR(106), 2020, pp. 107451.
Elsevier DOI
2006
Teacher-student models, Self-ensemble learning,
Graph convolutional networks, Semi-supervised learning
BibRef
Wu, J.X.[Jia-Xin],
Zhong, S.H.[Sheng-Hua],
Liu, Y.[Yan],
Dynamic graph convolutional network for multi-video summarization,
PR(107), 2020, pp. 107382.
Elsevier DOI
2008
Multi-video summarization, Graph convolutional network, Class imbalance problem
BibRef
Yu, B.[Bin],
Hu, J.Z.[Jin-Zhi],
Xie, Y.[Yu],
Zhang, C.[Chen],
Tang, Z.H.[Zhou-Hua],
Rich heterogeneous information preserving network representation
learning,
PR(108), 2020, pp. 107564.
Elsevier DOI
2008
Network representation learning, Heterogeneous information, Autoencoder
BibRef
Liu, Y.S.[Yong-Sheng],
Chen, W.Y.[Wen-Yu],
Qu, H.[Hong],
Mahmud, S.M.H.[S.M. Hasan],
Miao, K.[Kebin],
Weakly supervised image classification and pointwise localization
with graph convolutional networks,
PR(109), 2021, pp. 107596.
Elsevier DOI
2009
Deep learning, Learning systems, Convolutional neural networks,
Predictive models, Image classification, Graph theory
BibRef
Wang, H.,
Zou, Y.,
Chong, D.,
Wang, W.,
Modeling Label Dependencies for Audio Tagging With Graph
Convolutional Network,
SPLetters(27), 2020, pp. 1560-1564.
IEEE DOI
2009
Tagging, Acoustics, Spectrogram, Training, Convolution,
Symmetric matrices, Probability, Audio tagging, label dependencies,
representation learning
BibRef
Chang, J.L.[Jian-Long],
Wang, L.F.[Ling-Feng],
Meng, G.F.[Gao-Feng],
Zhang, Q.[Qi],
Xiang, S.M.[Shi-Ming],
Pan, C.H.[Chun-Hong],
Local-Aggregation Graph Networks,
PAMI(42), No. 11, November 2020, pp. 2874-2886.
IEEE DOI
2010
BibRef
Earlier: A1, A2, A3, A5, A6, Only:
Deep Adaptive Image Clustering,
ICCV17(5880-5888)
IEEE DOI
1802
Convolution, Neural networks, Message passing, Laplace equations,
Aggregates, Pattern recognition, Function approximation,
non-Euclidean structured signal.
feature extraction, image classification, iterative methods,
Training
BibRef
Liu, Y.B.[Yan-Bei],
Wang, Q.[Qi],
Wang, X.[Xiao],
Zhang, F.[Fang],
Geng, L.[Lei],
Wu, J.[Jun],
Xiao, Z.T.[Zhi-Tao],
Community enhanced graph convolutional networks,
PRL(138), 2020, pp. 462-468.
Elsevier DOI
1806
Graph representation learning, Community structure, Graph convolutional networks
BibRef
Li, Q.[Qing],
Peng, X.J.[Xiao-Jiang],
Qiao, Y.[Yu],
Peng, Q.A.[Qi-Ang],
Learning label correlations for multi-label image recognition with
graph networks,
PRL(138), 2020, pp. 378-384.
Elsevier DOI
1806
Multi-label image recognition, Graph convolutional networks,
Label correlation graph, Sparse correlation constraint
BibRef
Ye, J.[Jin],
He, J.J.[Jun-Jun],
Peng, X.J.[Xiao-Jiang],
Wu, W.H.[Wen-Hao],
Qiao, Y.[Yu],
Attention-driven Dynamic Graph Convolutional Network for Multi-label
Image Recognition,
ECCV20(XXI:649-665).
Springer DOI
2011
BibRef
Bai, S.[Song],
Zhang, F.H.[Fei-Hu],
Torr, P.H.S.[Philip H.S.],
Hypergraph convolution and hypergraph attention,
PR(110), 2021, pp. 107637.
Elsevier DOI
2011
Graph learning, Hypergraph learning, Graph neural networks,
Semi-supervised learning
BibRef
Gama, F.,
Isufi, E.,
Leus, G.,
Ribeiro, A.,
Graphs, Convolutions, and Neural Networks: From Graph Filters to
Graph Neural Networks,
SPMag(37), No. 6, November 2020, pp. 128-138.
IEEE DOI
2011
Convolution, Finite impulse response filters,
Autoregressive processes, Network topology, Information filters,
Graphical models
BibRef
Iddianozie, C.[Chidubem],
McArdle, G.[Gavin],
Improved Graph Neural Networks for Spatial Networks Using
Structure-Aware Sampling,
IJGI(9), No. 11, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Li, Y.S.[Yan-Sheng],
Chen, R.X.[Rui-Xian],
Zhang, Y.J.[Yong-Jun],
Zhang, M.[Mi],
Chen, L.[Ling],
Multi-Label Remote Sensing Image Scene Classification by Combining a
Convolutional Neural Network and a Graph Neural Network,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link
2012
BibRef
Park, H.,
Jeong, M.,
Kim, Y.,
Kim, C.,
Self-Training Of Graph Neural Networks Using Similarity Reference For
Robust Training With Noisy Labels,
ICIP20(1951-1955)
IEEE DOI
2011
Training, Sampling methods, Noise measurement, Feature extraction,
Training data, Indexes, Data mining, Noisy label, sampling method,
graph-based CNN.
BibRef
Adaloglou, N.[Nikolas],
Vretos, N.[Nicholas],
Daras, P.[Petros],
Multi-view Adaptive Graph Convolutions for Graph Classification,
ECCV20(XXVI:398-414).
Springer DOI
2011
BibRef
Zhang, X.K.[Xi-Kun],
Xu, C.[Chang],
Tao, D.C.[Da-Cheng],
On Dropping Clusters to Regularize Graph Convolutional Neural Networks,
ECCV20(XXI:245-260).
Springer DOI
2011
BibRef
Korban, M.[Matthew],
Li, X.[Xin],
Ddgcn: A Dynamic Directed Graph Convolutional Network for Action
Recognition,
ECCV20(XX:761-776).
Springer DOI
2011
BibRef
Yu, C.Q.[Chang-Qian],
Liu, Y.F.[Yi-Fan],
Gao, C.X.[Chang-Xin],
Shen, C.H.[Chun-Hua],
Sang, N.[Nong],
Representative Graph Neural Network,
ECCV20(VII:379-396).
Springer DOI
2011
BibRef
Iscen, A.[Ahmet],
Tolias, G.[Giorgos],
Avrithis, Y.[Yannis],
Chum, O.[Ondrej],
Schmid, C.[Cordelia],
Graph Convolutional Networks for Learning with Few Clean and Many Noisy
Labels,
ECCV20(X:286-302).
Springer DOI
2011
BibRef
Wang, C.[Chu],
Samari, B.[Babak],
Kim, V.G.[Vladimir G.],
Chaudhuri, S.[Siddhartha],
Siddiqi, K.[Kaleem],
Affinity Graph Supervision for Visual Recognition,
CVPR20(8244-8252)
IEEE DOI
2008
Visualization, Training, Task analysis, Manganese, Proposals,
Computer architecture, Convolutional neural networks
BibRef
Xu, Q.G.[Qian-Geng],
Sun, X.D.[Xu-Dong],
Wu, C.Y.[Cho-Ying],
Wang, P.Q.[Pan-Qu],
Neumann, U.[Ulrich],
Grid-GCN for Fast and Scalable Point Cloud Learning,
CVPR20(5660-5669)
IEEE DOI
2008
Computational modeling, Data models,
Convolution, Aggregates, Task analysis, Feature extraction
BibRef
Wei, X.,
Yu, R.,
Sun, J.,
View-GCN: View-Based Graph Convolutional Network for 3D Shape
Analysis,
CVPR20(1847-1856)
IEEE DOI
2008
Shape, Convolution, Feature extraction,
Aggregates, Image recognition
BibRef
You, Y.,
Chen, T.,
Wang, Z.,
Shen, Y.,
L2-GCN: Layer-Wise and Learned Efficient Training of Graph
Convolutional Networks,
CVPR20(2124-2132)
IEEE DOI
2008
Training, Time complexity, Convolution, Memory management,
Prediction algorithms, Clustering algorithms
BibRef
Yang, Q.,
Li, C.,
Dai, W.,
Zou, J.,
Qi, G.,
Xiong, H.,
Rotation Equivariant Graph Convolutional Network for Spherical Image
Classification,
CVPR20(4302-4311)
IEEE DOI
2008
Convolution, Kernel, Solid modeling,
Distortion, Image quality, Convolutional neural networks
BibRef
Lin, J.,
Yuan, Y.,
Shao, T.,
Zhou, K.,
Towards High-Fidelity 3D Face Reconstruction From In-the-Wild Images
Using Graph Convolutional Networks,
CVPR20(5890-5899)
IEEE DOI
2008
Face, Shape, Image reconstruction,
Image color analysis, Rendering (computer graphics), Feature extraction
BibRef
Yang, Y.,
Qiu, J.,
Song, M.,
Tao, D.,
Wang, X.,
Distilling Knowledge From Graph Convolutional Networks,
CVPR20(7072-7081)
IEEE DOI
2008
Knowledge engineering, Task analysis,
Computational modeling, Computer science, Training, Neural networks
BibRef
Zhang, K.,
Li, T.,
Shen, S.,
Liu, B.,
Chen, J.,
Liu, Q.,
Adaptive Graph Convolutional Network With Attention Graph Clustering
for Co-Saliency Detection,
CVPR20(9047-9056)
IEEE DOI
2008
Feature extraction, Task analysis, Adaptive systems, Decoding,
Saliency detection, Visualization, Convolution
BibRef
Lin, Z.,
Huang, S.,
Wang, Y.F.,
Convolution in the Cloud: Learning Deformable Kernels in 3D Graph
Convolution Networks for Point Cloud Analysis,
CVPR20(1797-1806)
IEEE DOI
2008
Convolution, Kernel,
Feature extraction, Shape, Task analysis
BibRef
Park, J.[Jiwoong],
Lee, M.[Minsik],
Chang, H.J.[Hyung Jin],
Lee, K.[Kyuewang],
Choi, J.Y.[Jin Young],
Symmetric Graph Convolutional Autoencoder for Unsupervised Graph
Representation Learning,
ICCV19(6518-6527)
IEEE DOI
2004
data visualisation, decoding, encoding, graph theory,
image representation, learning (artificial intelligence),
BibRef
Mosella-Montoro, A.,
Ruiz-Hidalgo, J.,
Residual Attention Graph Convolutional Network for Geometric 3D Scene
Classification,
GMDL19(4123-4132)
IEEE DOI
2004
computational geometry, convolutional neural nets,
feature extraction, image classification, image colour analysis,
agc
BibRef
Sun, H.L.[Hao-Liang],
Zhen, X.T.[Xian-Tong],
Yin, Y.L.[Yi-Long],
Learning the Set Graphs:
Image-Set Classification Using Sparse Graph Convolutional Networks,
ICIP19(4554-4558)
IEEE DOI
1910
Set graph learning, Graph convolutional network, l1,2-Norm,
Image-set classification
BibRef
Chen, Z.M.[Zhao-Min],
Wei, X.S.[Xiu-Shen],
Wang, P.[Peng],
Guo, Y.[Yanwen],
Multi-Label Image Recognition With Graph Convolutional Networks,
CVPR19(5172-5181).
IEEE DOI
2002
BibRef
Pope, P.E.[Phillip E.],
Kolouri, S.[Soheil],
Rostami, M.[Mohammad],
Martin, C.E.[Charles E.],
Hoffmann, H.[Heiko],
Explainability Methods for Graph Convolutional Neural Networks,
CVPR19(10764-10773).
IEEE DOI
2002
BibRef
Zhang, L.[Ling],
Zhu, Z.G.[Zhi-Gang],
Unsupervised Feature Learning for Point Cloud Understanding by
Contrasting and Clustering Using Graph Convolutional Neural Networks,
3DV19(395-404)
IEEE DOI
1911
Task analysis, Feature extraction,
Training, Unsupervised learning, Semantics,
Graph convolutional neural network
BibRef
Litany, O.,
Bronstein, A.,
Bronstein, M.,
Makadia, A.,
Deformable Shape Completion with Graph Convolutional Autoencoders,
CVPR18(1886-1895)
IEEE DOI
1812
Shape, Task analysis, Training, Strain, Neural networks
BibRef
Verma, N.[Nitika],
Boyer, E.[Edmond],
Verbeek, J.[Jakob],
FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis,
CVPR18(2598-2606)
IEEE DOI
1812
Shape, Convolution, Standards, Visualization, Neural networks
BibRef
Edwards, M.[Michael],
Xie, X.H.[Xiang-Hua],
Graph Convolutional Neural Network,
BMVC16(xx-yy).
HTML Version.
1805
BibRef
Chapter on Pattern Recognition, Clustering, Statistics, Grammars, Learning, Neural Nets, Genetic Algorithms continues in
Convolutional Neural Networks, Design, Implementation Issues .