Piotto, N.[Nicola],
Conci, N.[Nicola],
de Natale, F.G.B.[Francesco G.B.],
Syntactic Matching of Trajectories for Ambient Intelligence
Applications,
MultMed(11), No. 7, November 2009, pp. 1266-1275.
IEEE DOI
0911
BibRef
And: A1, A3, A2:
Hierarchical Matching of 3D Pedestrian Trajectories for Surveillance
Applications,
AVSBS09(146-151).
IEEE DOI
0909
BibRef
Pellegrini, S.[Stefano],
Van Gool, L.J.[Luc J.],
Tracking with a mixed continuous-discrete Conditional Random Field,
CVIU(117), No. 10, 2013, pp. 1215-1228.
Elsevier DOI
1309
Tracking
BibRef
Pellegrini, S.[Stefano],
Ess, A.[Andreas],
Van Gool, L.J.[Luc J.],
Improving Data Association by Joint Modeling of Pedestrian Trajectories
and Groupings,
ECCV10(I: 452-465).
Springer DOI
1009
BibRef
Pellegrini, S.,
Ess, A.[Andreas],
Schindler, K.[Konrad],
Van Gool, L.J.,
You'll never walk alone:
Modeling social behavior for multi-target tracking,
ICCV09(261-268).
IEEE DOI
0909
BibRef
Ess, A.[Andreas],
Leibe, B.[Bastian],
Van Gool, L.J.[Luc J.],
Depth and Appearance for Mobile Scene Analysis,
ICCV07(1-8).
IEEE DOI
0710
BibRef
Liu, W.,
Lau, R.W.H.,
Wang, X.G.[Xiao-Gang],
Manocha, D.[Dinesh],
Exemplar-AMMs:
Recognizing Crowd Movements From Pedestrian Trajectories,
MultMed(18), No. 12, December 2016, pp. 2398-2406.
IEEE DOI
1612
Computational modeling
BibRef
Antonini, G.[Gianluca],
Martinez, S.V.[Santiago Venegas],
Bierlaire, M.[Michel],
Thiran, J.P.[Jean Philippe],
Behavioral Priors for Detection and Tracking of Pedestrians in Video
Sequences,
IJCV(69), No. 2, August 2006, pp. 159-180.
Springer DOI
0606
BibRef
Earlier: A2, A1, A4, A3:
Bayesian integration of a discrete choice pedestrian behavioral model
and image correlation techniques for automatic multi object tracking,
ICIP04(II: 1037-1040).
IEEE DOI
0505
BibRef
Alahi, A.[Alexandre],
Marimon, D.[David],
Bierlaire, M.[Michel],
Kunt, M.[Murat],
A master-slave approach for object detection and matching with fixed
and mobile cameras,
ICIP08(1712-1715).
IEEE DOI
0810
BibRef
Earlier: A1, A3, A4, Only:
Object Detection and Matching with Mobile Cameras Collaborating with
Fixed Cameras,
M2SFA208(xx-yy).
0810
Primarily for pedestrians.
BibRef
Alahi, A.[Alexandre],
Vandergheynst, P.[Pierre],
Bierlaire, M.[Michel],
Kunt, M.[Murat],
Cascade of descriptors to detect and track objects across any network
of cameras,
CVIU(114), No. 6, June 2010, pp. 624-640.
Elsevier DOI
1006
Object detection; Object tracking; Region descriptors; Cascade of
descriptors; Multi-view; Mobile cameras; Pedestrian recognition
BibRef
Biliotti, D.[David],
Antonini, G.[Gianluca],
Thiran, J.P.[Jean Philippe],
Multi-Layer Hierarchical Clustering of Pedestrian Trajectories for
Automatic Counting of People in Video Sequences,
Motion05(II: 50-57).
IEEE DOI
0502
BibRef
Antonini, G.[Gianluca],
Thiran, J.P.[Jean Philippe],
Counting Pedestrians in Video Sequences Using Trajectory Clustering,
CirSysVideo(16), No. 8, August 2006, pp. 1008-1020.
IEEE DOI
0609
BibRef
Yang, L.[Lie],
Hu, G.H.[Guang-Hua],
Song, Y.H.[Yong-Hao],
Li, G.F.[Guo-Feng],
Xie, L.H.[Long-Han],
Intelligent video analysis: A Pedestrian trajectory extraction method
for the whole indoor space without blind areas,
CVIU(196), 2020, pp. 102968.
Elsevier DOI
2006
Fisheye camera, Pedestrian detection, Object tracking,
Height estimation, Trajectory extraction
BibRef
Zhou, C.J.[Cheng-Ju],
Wu, M.Q.[Mei-Qing],
Lam, S.K.[Siew-Kei],
Group Cost-Sensitive BoostLR With Vector Form Decorrelated Filters
for Pedestrian Detection,
ITS(21), No. 12, December 2020, pp. 5022-5035.
IEEE DOI
2012
Feature extraction, Decorrelation, Training,
Computational complexity, Testing, Boosting, Pedestrian detection,
BibRef
Haddad, S.[Sirin],
Lam, S.K.[Siew-Kei],
Self-Growing Spatial Graph Network for Context-Aware Pedestrian
Trajectory Prediction,
ICIP21(1029-1033)
IEEE DOI
2201
BibRef
Earlier:
Self-Growing Spatial Graph Networks for Pedestrian Trajectory
Prediction,
WACV20(1140-1148)
IEEE DOI
2006
Adaptation models, Visualization, Adaptive systems,
Machine learning, Predictive models, Spatial databases, Trajectory,
Nonnegative Matrix Factorization.
Trajectory, Predictive models, Task analysis, Dynamics, Data models
BibRef
Sawas, A.[Abdullah],
Abuolaim, A.[Abdullah],
Afifi, M.[Mahmoud],
Papagelis, M.[Manos],
A versatile computational framework for group pattern mining of
pedestrian trajectories,
GeoInfo(23), No. 4, October 2019, pp. 501-531.
WWW Link.
1911
BibRef
Chen, K.[Kai],
Song, X.[Xiao],
Ren, X.X.[Xiao-Xiang],
Pedestrian Trajectory Prediction in Heterogeneous Traffic Using Pose
Keypoints-Based Convolutional Encoder-Decoder Network,
CirSysVideo(31), No. 5, 2021, pp. 1764-1775.
IEEE DOI
2105
BibRef
Wang, R.P.[Rui-Ping],
Cui, Y.[Yong],
Song, X.[Xiao],
Chen, K.[Kai],
Fang, H.[Hong],
Multi-information-based convolutional neural network with attention
mechanism for pedestrian trajectory prediction,
IVC(107), 2021, pp. 104110.
Elsevier DOI
2103
Depth map, Pose, 2D-3D size information,
Convolutional neural network, Trajectory prediction
BibRef
Chen, K.[Kai],
Song, X.[Xiao],
Yuan, H.T.[Hai-Tao],
Ren, X.X.[Xiao-Xiang],
Fully Convolutional Encoder-Decoder With an Attention Mechanism for
Practical Pedestrian Trajectory Prediction,
ITS(23), No. 11, November 2022, pp. 20046-20060.
IEEE DOI
2212
Trajectory, Predictive models, Feature extraction,
Convolutional neural networks, Markov processes, Force,
attention mechanism
BibRef
Song, X.[Xiao],
Chen, K.[Kai],
Li, X.[Xu],
Sun, J.H.[Jing-Han],
Hou, B.C.[Bao-Cun],
Cui, Y.[Yong],
Zhang, B.C.[Bao-Chang],
Xiong, G.[Gang],
Wang, Z.L.[Zi-Lie],
Pedestrian Trajectory Prediction Based on Deep Convolutional LSTM
Network,
ITS(22), No. 6, June 2021, pp. 3285-3302.
IEEE DOI
2106
Trajectory, Predictive models, Neural networks, Force,
Mathematical model, Feature extraction, Tensors,
neural network
BibRef
Zhang, P.[Pu],
Xue, J.R.[Jian-Ru],
Zhang, P.F.[Peng-Fei],
Zheng, N.N.[Nan-Ning],
Ouyang, W.L.[Wan-Li],
Social-Aware Pedestrian Trajectory Prediction via States Refinement
LSTM,
PAMI(44), No. 5, May 2022, pp. 2742-2759.
IEEE DOI
2204
BibRef
Earlier: A1, A5, A3, A2, A4:
SR-LSTM: State Refinement for LSTM Towards Pedestrian Trajectory
Prediction,
CVPR19(12077-12086).
IEEE DOI
2002
Trajectory, Feature extraction, Legged locomotion,
Predictive models, Neurons, Message passing, Adaptation models,
message passing
BibRef
Quan, R.,
Zhu, L.,
Wu, Y.,
Yang, Y.,
Holistic LSTM for Pedestrian Trajectory Prediction,
IP(30), 2021, pp. 3229-3239.
IEEE DOI
2103
Trajectory, Vehicle dynamics, Logic gates, Dynamics, Roads,
Correlation, Task analysis, Pedestrian trajectory prediction,
pedestrian intention
BibRef
Zhou, Y.[Yutao],
Wu, H.Y.[Hua-Yi],
Cheng, H.Q.[Hong-Quan],
Qi, K.L.[Kun-Lun],
Hu, K.[Kai],
Kang, C.G.[Chao-Gui],
Zheng, J.[Jie],
Social graph convolutional LSTM for pedestrian trajectory prediction,
IET-ITS(15), No. 3, 2021, pp. 396-405.
DOI Link
2106
BibRef
Zamboni, S.[Simone],
Kefato, Z.T.[Zekarias Tilahun],
Girdzijauskas, S.[Sarunas],
Norén, C.[Christoffer],
Col, L.D.[Laura Dal],
Pedestrian trajectory prediction with convolutional neural networks,
PR(121), 2022, pp. 108252.
Elsevier DOI
2109
Trajectory prediction, Pedestrian prediction, Convolutional neural networks
BibRef
Yao, H.Y.[Hai-Yan],
Wan, W.G.[Wang-Gen],
Li, X.[Xiang],
End-to-End Pedestrian Trajectory Forecasting with Transformer Network,
IJGI(11), No. 1, 2022, pp. xx-yy.
DOI Link
2201
BibRef
Kong, W.[Wei],
Liu, Y.[Yun],
Li, H.[Hui],
Wang, C.X.[Chuan-Xu],
Tao, Y.[Ye],
Kong, X.Z.[Xiang-Zhen],
GSTA: Pedestrian trajectory prediction based on global
spatio-temporal association of graph attention network,
PRL(160), 2022, pp. 90-97.
Elsevier DOI
2208
Pedestrian trajectory, Trajectory prediction, Receptive field,
Attention mechanism, Spatio-temporal garph, Graph convolution
BibRef
Li, L.H.[Lin-Hui],
Zhou, B.[Bin],
Lian, J.[Jing],
Wang, X.C.[Xue-Cheng],
Zhou, Y.F.[Ya-Fu],
Multi-PPTP: Multiple Probabilistic Pedestrian Trajectory Prediction
in the Complex Junction Scene,
ITS(23), No. 8, August 2022, pp. 13758-13768.
IEEE DOI
2208
Trajectory, Predictive models, Junctions, Feature extraction,
Semantics, Real-time systems, Automobiles, Autonomous driving,
trajectory prediction
BibRef
Pang, S.M.[Shu Min],
Cao, J.X.[Jin Xin],
Jian, M.Y.[Mei Ying],
Lai, J.[Jian],
Yan, Z.Y.[Zhen Ying],
BR-GAN: A Pedestrian Trajectory Prediction Model Combined With
Behavior Recognition,
ITS(23), No. 12, December 2022, pp. 24609-24620.
IEEE DOI
2212
Trajectory, Behavioral sciences, Predictive models, Semantics,
Generative adversarial networks, Legged locomotion, Software,
trajectory prediction
BibRef
Zhou, H.[Hao],
Ren, D.C.[Dong-Chun],
Yang, X.[Xu],
Fan, M.Y.[Ming-Yu],
Huang, H.[Hai],
CSR: Cascade Conditional Variational Auto Encoder with Socially-aware
Regression for Pedestrian Trajectory Prediction,
PR(133), 2023, pp. 109030.
Elsevier DOI
2210
Pedestrian trajectory prediction, Socially-aware model,
Conditional variational autoencoder (CVAE)
BibRef
Wang, D.[Dafeng],
Liu, H.B.[Hong-Bo],
Wang, N.[Naiyao],
Wang, Y.[Yiyang],
Wang, H.[Hua],
McLoone, S.[Seán],
SEEM: A Sequence Entropy Energy-Based Model for Pedestrian Trajectory
All-Then-One Prediction,
PAMI(45), No. 1, January 2023, pp. 1070-1086.
IEEE DOI
2212
Trajectory, Predictive models, Generators, Entropy,
Stability analysis, Potential energy, Training,
potential energy regularization
BibRef
Lian, J.[Jing],
Yu, F.N.[Feng-Ning],
Li, L.H.[Lin-Hui],
Zhou, Y.[Yafu],
Causal Temporal-Spatial Pedestrian Trajectory Prediction With Goal
Point Estimation and Contextual Interaction,
ITS(23), No. 12, December 2022, pp. 24499-24509.
IEEE DOI
2212
Trajectory, Predictive models, Feature extraction, Transformers,
Task analysis, Semantics, Decoding, transformer
BibRef
Korbmacher, R.[Raphael],
Tordeux, A.[Antoine],
Review of Pedestrian Trajectory Prediction Methods:
Comparing Deep Learning and Knowledge-Based Approaches,
ITS(23), No. 12, December 2022, pp. 24126-24144.
IEEE DOI
2212
Trajectory, Predictive models, Force, Microscopy,
Mathematical models, Knowledge based systems, Dynamics,
knowledge-based models
BibRef
Kothari, P.[Parth],
Alahi, A.[Alexandre],
Safety-Compliant Generative Adversarial Networks for Human Trajectory
Forecasting,
ITS(24), No. 4, April 2023, pp. 4251-4261.
IEEE DOI
2304
Trajectory, Predictive models, Generators, Forecasting, Transformers,
Biological system modeling, Generative adversarial networks,
multimodality
BibRef
Huynh, M.[Manh],
Alaghband, G.[Gita],
Online Adaptive Temporal Memory with Certainty Estimation for Human
Trajectory Prediction,
WACV23(940-949)
IEEE DOI
2302
Adaptation models, Navigation, Computational modeling, Dynamics,
Estimation, Predictive models, Robotics
BibRef
Chen, J.Y.[Jiu-Yu],
Wang, Z.L.[Zhong-Li],
Wang, J.[Jian],
OA-STGCN: An Output Anchoring-based Graph Convolutional Network for
Human Trajectory Prediction,
ICRVC22(320-324)
IEEE DOI
2301
Measurement, Convolution, Decision making, Psychology,
Prediction methods, Prediction algorithms, Trajectory, trajectory prediction
BibRef
Li, L.[Lihuan],
Pagnucco, M.[Maurice],
Song, Y.[Yang],
Graph-based Spatial Transformer with Memory Replay for Multi-future
Pedestrian Trajectory Prediction,
CVPR22(2221-2231)
IEEE DOI
2210
Robot motion, Analytical models, Smoothing methods,
Computational modeling, Predictive models, Transformers,
Video analysis and understanding
BibRef
Song, Y.[Yue],
Bisagno, N.[Niccoló],
Hassan, S.Z.[Syed Zohaib],
Conci, N.[Nicola],
AG-GAN: An Attentive Group-Aware GAN for pedestrian trajectory
prediction,
ICPR21(8703-8710)
IEEE DOI
2105
Predictive models, Benchmark testing,
Generative adversarial networks, Trajectory, Pattern recognition, History
BibRef
Shi, L.S.[Liu-Shuai],
Wang, L.[Le],
Long, C.J.[Cheng-Jiang],
Zhou, S.P.[San-Ping],
Zhou, M.[Mo],
Niu, Z.X.[Zhen-Xing],
Hua, G.[Gang],
SGCN: Sparse Graph Convolution Network for Pedestrian Trajectory
Prediction,
CVPR21(8990-8999)
IEEE DOI
2111
Legged locomotion, Adaptation models, Visualization,
Convolution, Predictive models, Trajectory
BibRef
Dendorfer, P.[Patrick],
Elflein, S.[Sven],
Leal-Taixé, L.[Laura],
MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution
Samples in Pedestrian Trajectory Prediction,
ICCV21(13138-13147)
IEEE DOI
2203
Measurement, Predictive models,
Generative adversarial networks, Routing, Generators,
BibRef
Bi, H.K.[Hui-Kun],
Zhang, R.[Ruisi],
Mao, T.[Tianlu],
Deng, Z.G.[Zhi-Gang],
Wang, Z.Q.[Zhao-Qi],
How Can I See My Future? FvTraj:
Using First-person View for Pedestrian Trajectory Prediction,
ECCV20(VII:576-593).
Springer DOI
2011
BibRef
Yu, C.J.[Cun-Jun],
Ma, X.[Xiao],
Ren, J.W.[Jia-Wei],
Zhao, H.[Haiyu],
Yi, S.[Shuai],
Spatio-temporal Graph Transformer Networks for Pedestrian Trajectory
Prediction,
ECCV20(XII: 507-523).
Springer DOI
2010
BibRef
Styles, O.,
Guha, T.,
Sanchez, V.,
Kot, A.C.,
Multi-Camera Trajectory Forecasting: Pedestrian Trajectory Prediction
in a Network of Cameras,
Precognition20(4379-4382)
IEEE DOI
2008
Cameras, Trajectory, Task analysis, Forecasting, Databases,
Computational modeling, Object detection
BibRef
Habibi, G.,
Jaipuria, N.,
How, J.P.,
SILA: An Incremental Learning Approach for Pedestrian Trajectory
Prediction,
Precognition20(4411-4421)
IEEE DOI
2008
Trajectory, Hidden Markov models, Training, Prediction algorithms,
Data models, Predictive models, Encoding
BibRef
Xue, H.[Hao],
Huynh, D.[Du],
Reynolds, M.[Mark],
Location-Velocity Attention for Pedestrian Trajectory Prediction,
WACV19(2038-2047)
IEEE DOI
1904
BibRef
Earlier:
SS-LSTM: A Hierarchical LSTM Model for Pedestrian Trajectory
Prediction,
WACV18(1186-1194)
IEEE DOI
1806
BibRef
And:
Bi-Prediction: Pedestrian Trajectory Prediction Based on
Bidirectional LSTM Classification,
DICTA17(1-8)
IEEE DOI
1804
learning (artificial intelligence), pedestrians,
recurrent neural nets, pedestrian trajectory prediction,
Task analysis.
feature extraction, image recognition,
learning (artificial intelligence), neural nets,
Trajectory.
image classification, object detection.
BibRef
Hasan, I.,
Setti, F.,
Tsesmelis, T.,
del Bue, A.,
Cristani, M.,
Galasso, F.,
'Seeing is Believing': Pedestrian Trajectory Forecasting Using Visual
Frustum of Attention,
WACV18(1178-1185)
IEEE DOI
1806
image motion analysis, minimisation, pedestrians, pose estimation,
collision avoidance, destination point, expected destination,
Visualization
BibRef
Maki, A.[Atsuto],
Seki, A.[Akihito],
Watanabe, T.[Tomoki],
Cipolla, R.[Roberto],
Co-occurrence flow for pedestrian detection,
ICIP11(1889-1892).
IEEE DOI
1201
BibRef
Galasso, F.[Fabio],
Iwasaki, M.[Masahiro],
Nobori, K.[Kunio],
Cipolla, R.[Roberto],
Spatio-temporal clustering of probabilistic region trajectories,
ICCV11(1738-1745).
IEEE DOI
1201
for pedestrian trajectories
BibRef
Ricci, E.[Elisa],
Tobia, F.[Francesco],
Zen, G.[Gloria],
Learning Pedestrian Trajectories with Kernels,
ICPR10(149-152).
IEEE DOI
1008
BibRef
Nishio, S.[Shuichi],
Okamoto, H.[Hiromi],
Babaguchi, N.[Noboru],
Hierarchical Anomality Detection Based on Situation,
ICPR10(1108-1111).
IEEE DOI
1008
Pedestrian trajectories.
BibRef
Ellis, D.[David],
Sommerlade, E.[Eric],
Reid, I.D.[Ian D.],
Modelling pedestrian trajectory patterns with Gaussian processes,
VS09(1229-1234).
IEEE DOI
0910
See also Action recognition using shared motion parts.
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Crowds, Tracking Multiple People, Multiple Pedestrian Tracking .