Saha, P.K.,
Udupa, J.K.,
Conant, E.F.,
Chakraborty, D.P.,
Sullivan, D.,
Breast tissue density quantification via digitized mammograms,
MedImg(20), No. 8, August 2001, pp. 792-803.
IEEE Top Reference.
0110
BibRef
Baeg, S.[Soon],
Kehtarnavaz, N.[Nasser],
Classification of breast mass abnormalities using denseness and
architectural distortion,
ELCVIA(1), No. 1, August 2002, pp. 1-20.
DOI Link
0208
BibRef
Subashini, T.S.,
Ramalingam, V.,
Palanivel, S.,
Automated assessment of breast tissue density in digital mammograms,
CVIU(114), No. 1, January 2010, pp. 33-43.
Elsevier DOI
1001
Mammograms; Breast tissue density; Segmentation; Pectoral muscles;
Artifact removal; Statistical features; Support vector machines
BibRef
Strange, H.[Harry],
Chen, Z.L.[Zhi-Li],
Denton, E.R.E.[Erika R.E.],
Zwiggelaar, R.[Reyer],
Modelling mammographic microcalcification clusters using persistent
mereotopology,
PRL(47), No. 1, 2014, pp. 157-163.
Elsevier DOI
1408
Discrete mereotopology
BibRef
Ashiru, O.,
Zwiggelaar, R.,
Classification of mammographic microcalcification clusters using a
combination of topological and location modelling,
IPTA16(1-6)
IEEE DOI
1703
feature extraction
BibRef
Strange, H.[Harry],
Denton, E.R.E.[Erika R.E.],
Kibiro, M.[Minnie],
Zwiggelaar, R.[Reyer],
Manifold Learning for Density Segmentation in High Risk Mammograms,
IbPRIA13(245-252).
Springer DOI
1307
BibRef
Chen, Z.L.[Zhi-Li],
Oliver, A.[Arnau],
Denton, E.R.E.[Erika R.E.],
Zwiggelaar, R.[Reyer],
Automated Mammographic Risk Classification Based on Breast Density
Estimation,
IbPRIA13(237-244).
Springer DOI
1307
BibRef
Chen, Z.L.[Zhi-Li],
Denton, E.R.E.[Erika R.E.],
Zwiggelaar, R.[Reyer],
Local Feature Based Breast Tissue Appearance Modelling for Mammographic
Risk Assessment,
BMVA(2013), No. 1, 2013, pp. 1-19.
PDF File.
1304
BibRef
Earlier:
Topographic representation based breast density segmentation for
mammographic risk assessment,
ICIP12(1993-1996).
IEEE DOI
1302
BibRef
Masmoudi, A.D.[Alima Damak],
Ben Ayed, N.G.[Norhen Gargouri],
Masmoudi, D.S.[Dorra Sellami],
Abid, R.[Riad],
LBPV descriptors-based automatic ACR/BIRADS classification approach,
JIVP(2013), No. 1, 2013, pp. 19.
DOI Link
1305
tissue density in breast cancer evaluation.
BibRef
Bandyopadhyay, S.K.[Samir K.],
Maitra, I.K.[Indra Kanta],
Nag, S.[Sanjay],
Mammographic Density Estimation and Classification Using Segmentation
and Progressive Elimination Method,
IJIG(13), No. 03, 2013, pp. 1350013.
DOI Link
1309
BibRef
Jagannath, H.S.,
Virmani, J.,
Kumar, V.,
Morphological Enhancement of Microcalcifications
in Digital Mammograms,
JIEI-B(93), No. 3, September-November 2012, pp. 163-172.
Springer DOI
1506
BibRef
Kumar, I.[Indrajeet],
Virmani, J.[Jitendra],
Bhadauria, H.S.,
A Review of Breast Density Classification Methods,
ICCSGD15().
BibRef
1500
Kallenberg, M.,
Petersen, K.,
Nielsen, M.,
Ng, A.Y.,
Diao, P.,
Igel, C.,
Vachon, C.M.,
Holland, K.,
Winkel, R.R.,
Karssemeijer, N.,
Lillholm, M.,
Unsupervised Deep Learning Applied to Breast Density Segmentation and
Mammographic Risk Scoring,
MedImg(35), No. 5, May 2016, pp. 1322-1331.
IEEE DOI
1605
Breast cancer
BibRef
Rabidas, R.[Rinku],
Chakraborty, J.[Jayasree],
Midya, A.[Abhishek],
Analysis of 2D singularities for mammographic mass classification,
IET-CV(11), No. 1, February 2017, pp. 22-32.
DOI Link
1703
BibRef
Chokri, F.[Ferkous],
Farida, M.H.[Merouani Hayet],
Mammographic mass classification according to Bi-RADS lexicon,
IET-CV(11), No. 3, April 2017, pp. 189-198.
DOI Link
1704
BibRef
Jiao, Z.C.[Zhi-Cheng],
Gao, X.B.[Xin-Bo],
Wang, Y.[Ying],
Li, J.[Jie],
A parasitic metric learning net for breast mass classification based
on mammography,
PR(75), No. 1, 2018, pp. 292-301.
Elsevier DOI
1712
Deep learning
BibRef
Suhail, Z.[Zobia],
Hamidinekoo, A.[Azam],
Zwiggelaar, R.[Reyer],
Mammographic mass classification using filter response patches,
IET-CV(12), No. 8, December 2018, pp. 1060-1066.
DOI Link
1812
BibRef
Kim, H.,
Lee, J.,
Soh, J.,
Min, J.,
Choi, Y.W.[Y. Wook],
Cho, S.,
Backprojection Filtration Image Reconstruction Approach for Reducing
High-Density Object Artifacts in Digital Breast Tomosynthesis,
MedImg(38), No. 5, May 2019, pp. 1161-1171.
IEEE DOI
1905
Image reconstruction, Image segmentation, Trajectory,
Reconstruction algorithms, Band-pass filters, Detectors,
image reconstruction
BibRef
Rajalakshmi, N.R.[N. Ravitha],
Vidhyapriya, R.,
Elango, N.,
Ramesh, N.[Nikhil],
Deeply supervised U-Net for mass segmentation in digital mammograms,
IJIST(31), No. 1, 2021, pp. 59-71.
DOI Link
2102
conditional random fields, deep supervision, mammograms, mass segmentation
BibRef
Li, H.[Hua],
Niu, J.[Jing],
Li, D.G.[Den-Gao],
Zhang, C.[Chen],
Classification of breast mass in two-view mammograms via deep
learning,
IET-IPR(15), No. 2, 2021, pp. 454-467.
DOI Link
2106
BibRef
Verma, P.[Parag],
Dumka, A.[Ankur],
Bhardwaj, A.[Anuj],
Kestwal, M.C.[Mukesh Chandra],
Classifying Breast Density in Mammographic Images Using Wavelet-Based
and Fine-Tuned Sensory Neural Networks,
IJIG(21), No. 5 2021, pp. 2140004.
DOI Link
2201
BibRef
Li, H.[Heyi],
Chen, D.D.[Dong-Dong],
Nailon, W.H.[William H.],
Davies, M.E.[Mike E.],
Laurenson, D.I.[David I.],
Dual Convolutional Neural Networks for Breast Mass Segmentation and
Diagnosis in Mammography,
MedImg(41), No. 1, January 2022, pp. 3-13.
IEEE DOI
2201
Cancer, Feature extraction, Breast, Image segmentation, Mammography,
Task analysis, Shape, Mammography diagnosis, dual-path network, deep learning
BibRef
Lee, J.[Juhun],
Nishikawa, R.M.[Robert M.],
Identifying Women With Mammographically-Occult Breast Cancer
Leveraging GAN-Simulated Mammograms,
MedImg(41), No. 1, January 2022, pp. 225-236.
IEEE DOI
2201
Mammography, Cancer, Breast, Generative adversarial networks,
Convolutional neural networks, Generators, Lesions,
radon cumulative distribution transform
BibRef
Hans, R.[Rahul],
Kaur, H.[Harjot],
Hybrid Biogeography-Based Optimization and Genetic Algorithm for
Feature Selection in Mammographic Breast Density Classification,
IJIG(22), No. 3 2022, pp. 2140007.
DOI Link
2206
BibRef
Tang, Y.X.[Yu-Xing],
Cao, Z.J.[Zhen-Jie],
Zhang, Y.B.[Yan-Bo],
Yang, Z.C.[Zhi-Cheng],
Ji, Z.C.[Zong-Cheng],
Wang, Y.[Yiwei],
Han, M.[Mei],
Ma, J.[Jie],
Xiao, J.[Jing],
Chang, P.[Peng],
Leveraging Large-Scale Weakly Labeled Data for Semi-Supervised Mass
Detection in Mammograms,
CVPR21(3854-3863)
IEEE DOI
2111
Training, Uncertainty, Computational modeling,
Semisupervised learning, Radiology, Probabilistic logic, Data models
BibRef
Li, H.,
Mukundan, R.,
Boyd, S.,
Breast Density Classification Using Multifractal Spectrum with
Histogram Analysis,
IVCNZ19(1-6)
IEEE DOI
2004
biological organs, cancer, diagnostic radiography,
feature extraction, image classification, image texture,
image enhancement
BibRef
Jaehwan, L.,
Donggeun, Y.,
Hyo-Eun, K.,
Photometric Transformer Networks and Label Adjustment for Breast
Density Prediction,
VRMI19(460-466)
IEEE DOI
2004
learning (artificial intelligence), mammography,
medical image processing, neural nets, breast density prediction,
label refinement
BibRef
Lizzi, F.[Francesca],
Laruina, F.[Francesco],
Oliva, P.[Piernicola],
Retico, A.[Alessandra],
Fantacci, M.E.[Maria Evelina],
Residual Convolutional Neural Networks to Automatically Extract
Significant Breast Density Features,
CAIPWS19(28-35).
Springer DOI
1909
BibRef
Zhang, L.L.[Lin-Lin],
Li, Y.F.[Yan-Feng],
Chen, H.J.[Hou-Jin],
Cheng, L.[Lin],
Mammographic Mass Detection by Bilateral Analysis Based on
Convolution Neural Network,
ICIP19(784-788)
IEEE DOI
1910
Mass Detection, Mammogram, Deep Learning, Region Registration
BibRef
Li, Y.F.[Yan-Feng],
Chen, H.J.[Hou-Jin],
Zhang, L.L.[Lin-Lin],
Cheng, L.[Lin],
Mammographic mass detection based on convolution neural network,
ICPR18(3850-3855)
IEEE DOI
1812
Mammography, Feature extraction, Strips, Muscles, Breast cancer,
Training, convolution neural network, mammogram, mass detection, deep learning
BibRef
Tlusty, T.,
Amit, G.,
Ben-Ari, R.,
Unsupervised clustering of mammograms for outlier detection and
breast density estimation,
ICPR18(3808-3813)
IEEE DOI
1812
Breast, Image segmentation, Mammography, Training,
Feature extraction, Implants
BibRef
Hernández-Hernández, S.[Saiveth],
Orantes-Molina, A.[Antonio],
Cruz-Barbosa, R.[Raúl],
Improving Breast Mass Classification Through Kernel Methods and the
Fusion of Clinical Data and Image Descriptors,
MCPR18(258-266).
Springer DOI
1807
BibRef
Sajeev, S.,
Bajger, M.,
Lee, G.,
Structured Micro-Pattern Based LBP Features for Classification of
Masses in Dense Breasts,
DICTA17(1-8)
IEEE DOI
1804
biological organs, cancer, feature extraction,
image classification, image texture, mammography,
Mammography
BibRef
García, E.[Eloy],
Oliver, A.[Arnau],
Diez, Y.[Yago],
Diaz, O.[Oliver],
Lladó, X.[Xavier],
Martí, R.[Robert],
Martí, J.[Joan],
Similarity Metrics for Intensity-Based Registration Using Breast
Density Maps,
IbPRIA17(217-225).
Springer DOI
1706
BibRef
Rampun, A.[Andrik],
Morrow, P.[Philip],
Scotney, B.[Bryan],
Winder, J.[John],
Breast Density Classification Using Local Ternary Patterns in
Mammograms,
ICIAR17(463-470).
Springer DOI
1706
BibRef
Fonseca, P.[Pablo],
Castañeda, B.[Benjamin],
Valenzuela, R.[Ricardo],
Wainer, J.[Jacques],
Breast Density Classification with Convolutional Neural Networks,
CIARP16(101-108).
Springer DOI
1703
BibRef
Sajeev, S.,
Bajger, M.[Mariusz],
Lee, G.[Gobert],
Segmentation of Breast Masses in Local Dense Background Using
Adaptive Clip Limit-CLAHE,
DICTA15(1-8)
IEEE DOI
1603
entropy
BibRef
Lao, Z.Q.[Zhi-Qiang],
Huo, Z.M.[Zhi-Min],
Quantitative assessment of breast dense tissue on mammograms,
ICIP09(2605-2608).
IEEE DOI
0911
BibRef
Hadley, E.M.[Edward M.],
Denton, E.R.E.[Erika R. E.],
Pont, J.[Josep],
Pérez, E.[Elsa],
Zwiggelaar, R.[Reyer],
Risk Classification of Mammograms Using Anatomical Linear Structure and
Density Information,
IbPRIA07(II: 186-193).
Springer DOI
0706
BibRef
Bosch, A.[Anna],
Munoz, X.[Xavier],
Oliver, A.[Arnau],
Marti, J.[Joan],
Modeling and Classifying Breast Tissue Density in Mammograms,
CVPR06(II: 1552-1558).
IEEE DOI
0606
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Mammograms, MRI, Magnetic Resonance Imaging .