22.1.6.2.1 Land Use, General Problems

Chapter Contents (Back)
Land Use. Clearly an overlaping subset of Land Cover. See also Subpixel Target, Subpixel Land Use, Tiny Objects.

Bischof, H.[Horst], Schneider, W.[Werner], Pinz, A.[Axel],
Multispectral Classification of Landsat Images Using Neural Networks,
GeoRS(30), No. 3, 1992, pp. 482-490. BibRef 9200

Bischof, H.[Horst], Leonardis, A.[Ales],
Finding Optimal Neural Networks for Land Use Classification,
GeoRS(36), No. 1, 1998, pp. 337-341. BibRef 9800

Ji, C.Y.,
Land-Use Classification of Remotely Sensed Data Using Kohonen Self-Organizing Feature Map Neural Networks,
PhEngRS(66), No. 12, December 2000, pp. 1451-1460. Results are compared to those of the maximum-likelihood method and of the BP neural networks. 0101
BibRef

Yuan, H., van der Wiele, C., Khorram, S.,
An Automated Artificial Neural Network System for Land Use/Land Cover Classification from Landsat TM Imagery,
RS(1), No. 3, September 2009, pp. 243-265.
DOI Link 1203
BibRef

Manandhar, R., Odeh, I., Ancev, T.,
Improving the Accuracy of Land Use and Land Cover Classification of Landsat Data Using Post-Classification Enhancement,
RS(1), No. 3, September 2009, pp. 330-344.
DOI Link 1203
BibRef

Clark, M., Aide, T.,
Virtual Interpretation of Earth Web-Interface Tool (VIEW-IT) for Collecting Land-Use/Land-Cover Reference Data,
RS(3), No. 3, March 2011, pp. 601-620.
DOI Link 1203
BibRef

Martínez, S., Mollicone, D.,
From Land Cover to Land Use: A Methodology to Assess Land Use from Remote Sensing Data,
RS(4), No. 4, April 2012, pp. 1024-1045.
DOI Link 1202
BibRef

Kitada, K., Fukuyama, K.,
Land-Use and Land-Cover Mapping Using a Gradable Classification Method,
RS(4), No. 6, June 2012, pp. 1544-1558.
DOI Link 1208
BibRef

Jiao, L.M.[Li-Min], Liu, Y.L.[Yao-Lin], Li, H.L.[Hong-Liang],
Characterizing land-use classes in remote sensing imagery by shape metrics,
PandRS(72), No. 1, August 2012, pp. 46-55.
Elsevier DOI 1209
Land-use; Image segmentation; Landscape metrics; Shape metrics; Image classification BibRef

Jiao, L.M., Liu, Y.L.,
Analyzing the Shape Characteristics of Land Use Classes in Remote Sensing Imagery,
AnnalsPRS(I-7), No. 2012, pp. 135-140.
HTML Version. 1209
BibRef

Chen, Y.[Yanlei], Gong, P.[Peng],
Clustering based on eigenspace transformation: CBEST for efficient classification,
PandRS(83), No. 1, 2013, pp. 64-80.
Elsevier DOI 1308
Land cover/use mapping BibRef

Li, Y.Z.[Yi-Zhan], Zhu, X.F.[Xiu-Fang], Pan, Y.Z.[Yao-Zhong], Gu, J.Y.[Jian-Yu], Zhao, A.Z.[An-Zhou], Liu, X.F.[Xian-Feng],
A Comparison of Model-Assisted Estimators to Infer Land Cover/Use Class Area Using Satellite Imagery,
RS(6), No. 9, 2014, pp. 8904-8922.
DOI Link 1410
BibRef

Chen, S.Z.[Shi-Zhi], Tian, Y.L.[Ying-Li],
Pyramid of Spatial Relatons for Scene-Level Land Use Classification,
GeoRS(53), No. 4, April 2015, pp. 1947-1957.
IEEE DOI 1502
data structures BibRef

Pereira, D.R.[Danillo Roberto], Papa, J.P.[Joăo Paulo],
A new approach to contextual learning using interval arithmetic and its applications for land-use classification,
PRL(83, Part 2), No. 1, 2016, pp. 188-194.
Elsevier DOI 1609
Sliding Window BibRef

Fan, J., Chen, T., Lu, S.,
Unsupervised Feature Learning for Land-Use Scene Recognition,
GeoRS(55), No. 4, April 2017, pp. 2250-2261.
IEEE DOI 1704
geophysical techniques BibRef

Chen, Y.[Yangbo], Dou, P.[Peng], Yang, X.J.[Xiao-Jun],
Improving Land Use/Cover Classification with a Multiple Classifier System Using AdaBoost Integration Technique,
RS(9), No. 10, 2017, pp. xx-yy.
DOI Link 1711
BibRef

Zheng, H.R.[Hong-Rui], Du, P.J.[Pei-Jun], Chen, J.[Jike], Xia, J.S.[Jun-Shi], Li, E.[Erzhu], Xu, Z.G.[Zhi-Gang], Li, X.J.[Xiao-Juan], Yokoya, N.[Naoto],
Performance Evaluation of Downscaling Sentinel-2 Imagery for Land Use and Land Cover Classification by Spectral-Spatial Features,
RS(9), No. 12, 2017, pp. xx-yy.
DOI Link 1802
BibRef

Kanjir, U.[Urška], Đuric, N.[Nataša], Veljanovski, T.[Tatjana],
Sentinel-2 Based Temporal Detection of Agricultural Land Use Anomalies in Support of Common Agricultural Policy Monitoring,
IJGI(7), No. 10, 2018, pp. xx-yy.
DOI Link 1811
BibRef

Zhang, B.[Bin], Wang, C.P.[Cun-Peng], Shen, Y.L.[Yong-Lin], Liu, Y.Y.[Yue-Yan],
Fully Connected Conditional Random Fields for High-Resolution Remote Sensing Land Use/Land Cover Classification with Convolutional Neural Networks,
RS(10), No. 12, 2018, pp. xx-yy.
DOI Link 1901
BibRef

Wang, Q.[Qing], Sun, H.[Hua], Li, R.P.[Ruo-Pu], Wang, G.X.[Guang-Xing],
A new stochastic simulation algorithm for image-based classification: Feature-space indicator simulation,
PandRS(152), 2019, pp. 145-165.
Elsevier DOI 1905
Remote sensing, Image classification, Feature space, Geostatistics, Stochastic simulation, Land use and land cover BibRef

Ray, R.L.[Ram L.], Ibironke, A.[Ademola], Kommalapati, R.[Raghava], Fares, A.[Ali],
Quantifying the Impacts of Land-Use and Climate on Carbon Fluxes Using Satellite Data across Texas, U.S.,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link 1908
BibRef

Hou, W.[Wan], Hou, X.Y.[Xi-Yong],
Data Fusion and Accuracy Analysis of Multi-Source Land Use/Land Cover Datasets along Coastal Areas of the Maritime Silk Road,
IJGI(8), No. 12, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Talukdar, S.[Swapan], Singha, P.[Pankaj], Mahato, S.[Susanta], Shahfahad, Pal, S.[Swades], Liou, Y.A.[Yuei-An], Rahman, A.[Atiqur],
Land-Use Land-Cover Classification by Machine Learning Classifiers for Satellite Observations: A Review,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link 2004
BibRef

Su, M.[Mo], Guo, R.Z.[Ren-Zhong], Chen, B.[Bin], Hong, W.Y.[Wu-Yang], Wang, J.Q.[Jia-Qi], Feng, Y.M.[Yi-Mei], Xu, B.[Bing],
Sampling Strategy for Detailed Urban Land Use Classification: A Systematic Analysis in Shenzhen,
RS(12), No. 9, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Tian, Y.[Ye], Chen, C.[Chenru], Chen, X.Y.[Xin-Yi], Zhang, Q.Q.[Qian-Qian], Sun, R.Z.[Rui-Zhi],
Research on real-time analysis technology of urban land use based on support vector machine,
PRL(133), 2020, pp. 320-326.
Elsevier DOI 2005
Support vector machine, Data processing, Data analysis, Web mining, Text analysis BibRef

Sun, J.[Jing], Wang, H.[Hong], Song, Z.[Zhenglin], Lu, J.[Jinbo], Meng, P.[Pengyu], Qin, S.H.[Shu-Hong],
Mapping Essential Urban Land Use Categories in Nanjing by Integrating Multi-Source Big Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Chang, S.[Shouzhi], Wang, Z.M.[Zong-Ming], Mao, D.H.[De-Hua], Guan, K.[Kehan], Jia, M.M.[Ming-Ming], Chen, C.[Chaoqun],
Mapping the Essential Urban Land Use in Changchun by Applying Random Forest and Multi-Source Geospatial Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Qian, Z.[Zhen], Liu, X.[Xintao], Tao, F.[Fei], Zhou, T.[Tong],
Identification of Urban Functional Areas by Coupling Satellite Images and Taxi GPS Trajectories,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Vali, A.[Ava], Comai, S.[Sara], Matteucci, M.[Matteo],
Deep Learning for Land Use and Land Cover Classification based on Hyperspectral and Multispectral Earth Observation Data: A Review,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef

Müller, I.[Inken], Taubenböck, H.[Hannes], Kuffer, M.[Monika], Wurm, M.[Michael],
Misperceptions of Predominant Slum Locations? Spatial Analysis of Slum Locations in Terms of Topography Based on Earth Observation Data,
RS(12), No. 15, 2020, pp. xx-yy.
DOI Link 2008
BibRef


Mohd Kamal, N.A., Razak, K.A., Rambat, S.,
Land Use/land Cover Assessment in a Seismically Active Region In Kundasang, Sabah,
GGT19(433-440).
DOI Link 1912
BibRef

Men, J., Fang, L., Liu, Y., Sun, Y.,
Land Use Classification Based On Multi-structure Convolution Neural Network Features Cascading,
PIA19(163-167).
DOI Link 1912
BibRef

Yang, C., Rottensteiner, F., Heipke, C.,
Towards Better Classification of Land Cover and Land Use Based On Convolutional Neural Networks,
Semantics3D19(139-146).
DOI Link 1912
BibRef

Jamali, A., Abdul Rahman, A.,
Evaluation of Advanced Data Mining Algorithms in Land Use/land Cover Mapping,
GGT19(283-289).
DOI Link 1912
BibRef

Nguyen, H.T.T., Doan, T.M., Radeloff, V.,
Applying Random Forest Classification to Map Land Use/land Cover Using Landsat 8 OLI,
Gi4DM18(363-367).
DOI Link 1805
BibRef

Sekertekin, A., Marangoz, A.M., Akcin, H.,
Pixel-based Classification Analysis of Land Use Land Cover Using Sentinel-2 And Landsat-8 Data,
GeoAdvances17(91-93).
DOI Link 1805
BibRef

Topaloglu, R.H.[Raziye Hale], Sertel, E.[Elif], Musaoglu, N.[Nebiye],
Assessment Of Classification Accuracies Of Sentinel-2 And Landsat-8 Data For Land Cover / Use Mapping,
ISPRS16(B8: 1055-1059).
DOI Link 1610
BibRef

Mansor, S.B., Pormanafi, S., Mahmud, A.R.B., Pirasteh, S.,
Optimization of Land Use Suitability for Agriculture Using Integrated Geospatial Model and Genetic Algorithms,
AnnalsPRS(I-2), No. 2012, pp. 229-234.
HTML Version. 1209
BibRef

Heremans, S.[Stien], Orshoven, J.V.[Jos Vand_],
Effect of the learning algorithm on the accuracy of sub-pixel land use classifications with multilayer perceptrons,
MultiTemp11(193-196).
IEEE DOI 1109
BibRef

Ma, S.[Shifa], He, J.H.[Jian-Hua], Liu, F.[Feng],
Land-use Spatial Optimization Model Based On Particle Swarm Optimization,
VCGVA09(xx-yy). 0910
Particle Swarm Optimization PSO, Land-Use Spatial Allocation, Spatial Modeling, GIS BibRef

Hefnawy, A.A.,
A High Accuracy Land Use/Cover Retrieval System,
HighRes09(xx-yy).
PDF File. 0906
BibRef

Pan, C.H.[Chun-Hong], Wu, G.[Gang], Prinet, V.[Veronique], Yang, Q.[Qing], Ma, S.D.[Song-De],
A Band-Weighted Landuse Classification Method for Multispectral Images,
CVPR05(I: 96-102).
IEEE DOI 0507
BibRef

Mathieu, S., Berthod, M., Leymarie, P.,
Determination of proportions and entropy of land use mixing in pixels of a multispectral satellite image,
ICPR94(A:798-800).
IEEE DOI 9410
BibRef

Chapter on Remote Sensing, Cartography, Aerial Images, Buildings, Roads, Terrain, ATR continues in
Habitat Analysis .


Last update:Sep 14, 2020 at 15:32:18