Botteron, C.[Cyril],
Dawes, N.[Nicholas],
Leclère, J.[Jérôme],
Skaloud, J.[Jan],
Weijs, S.V.[Steven V.],
Farine, P.A.[Pierre-André],
Soil Moisture & Snow Properties Determination with GNSS in Alpine
Environments: Challenges, Status, and Perspectives,
RS(5), No. 7, 2013, pp. 3516-3543.
DOI Link
1308
BibRef
Sánchez, N.[Nilda],
Alonso-Arroyo, A.[Alberto],
Martínez-Fernández, J.[José],
Piles, M.[María],
González-Zamora, Á.[Ángel],
Camps, A.[Adriano],
Vall-llosera, M.[Mercè],
On the Synergy of Airborne GNSS-R and Landsat 8 for Soil Moisture
Estimation,
RS(7), No. 8, 2015, pp. 9954.
DOI Link
1509
BibRef
Carreno-Luengo, H.[Hugo],
Lowe, S.[Stephen],
Zuffada, C.[Cinzia],
Esterhuizen, S.[Stephan],
Oveisgharan, S.[Shadi],
Spaceborne GNSS-R from the SMAP Mission: First Assessment of
Polarimetric Scatterometry over Land and Cryosphere,
RS(9), No. 4, 2017, pp. xx-yy.
DOI Link
1705
BibRef
Han, M.[Mutian],
Zhu, Y.L.[Yun-Long],
Yang, D.K.[Dong-Kai],
Hong, X.B.[Xue-Bao],
Song, S.H.[Shu-Hui],
A Semi-Empirical SNR Model for Soil Moisture Retrieval Using GNSS SNR
Data,
RS(10), No. 2, 2018, pp. xx-yy.
DOI Link
1804
BibRef
Eroglu, O.[Orhan],
Kurum, M.[Mehmet],
Boyd, D.[Dylan],
Gurbuz, A.C.[Ali Cafer],
High Spatio-Temporal Resolution CYGNSS Soil Moisture Estimates Using
Artificial Neural Networks,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link
1910
BibRef
Senyurek, V.[Volkan],
Lei, F.[Fangni],
Boyd, D.[Dylan],
Kurum, M.[Mehmet],
Gurbuz, A.C.[Ali Cafer],
Moorhead, R.[Robert],
Machine Learning-Based CYGNSS Soil Moisture Estimates over ISMN sites
in CONUS,
RS(12), No. 7, 2020, pp. xx-yy.
DOI Link
2004
BibRef
Senyurek, V.[Volkan],
Lei, F.[Fangni],
Boyd, D.[Dylan],
Gurbuz, A.C.[Ali Cafer],
Kurum, M.[Mehmet],
Moorhead, R.[Robert],
Evaluations of Machine Learning-Based CYGNSS Soil Moisture Estimates
against SMAP Observations,
RS(12), No. 21, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yang, T.[Ting],
Wan, W.[Wei],
Sun, Z.G.[Zhi-Gang],
Liu, B.J.[Bao-Jian],
Li, S.[Sen],
Chen, X.W.[Xiu-Wan],
Comprehensive Evaluation of Using TechDemoSat-1 and CYGNSS Data to
Estimate Soil Moisture over Mainland China,
RS(12), No. 11, 2020, pp. xx-yy.
DOI Link
2006
BibRef
Jing, L.[Lili],
Yang, L.[Lei],
Yang, W.T.[Wen-Tao],
Xu, T.H.[Tian-He],
Gao, F.[Fan],
Lu, Y.L.[Yi-Lin],
Sun, B.[Bo],
Yang, D.K.[Dong-Kai],
Hong, X.B.[Xue-Bao],
Wang, N.Z.[Na-Zi],
Ruan, H.L.[Hong-Liang],
Darrozes, J.[José],
Robust Kalman Filter Soil Moisture Inversion Model Using GPS SNR
Data: A Dual-Band Data Fusion Approach,
RS(13), No. 19, 2021, pp. xx-yy.
DOI Link
2110
BibRef
Camps, A.[Adriano],
Vall-Llossera, M.[Mercedes],
Park, H.[Hyuk],
Portal, G.[Gerard],
Rossato, L.[Luciana],
Sensitivity of TDS-1 GNSS-R Reflectivity to Soil Moisture: Global and
Regional Differences and Impact of Different Spatial Scales,
RS(10), No. 11, 2018, pp. xx-yy.
DOI Link
1812
BibRef
Jia, Y.[Yan],
Jin, S.G.[Shuang-Gen],
Savi, P.[Patrizia],
Gao, Y.[Yun],
Tang, J.[Jing],
Chen, Y.X.[Yi-Xiang],
Li, W.[Wenmei],
GNSS-R Soil Moisture Retrieval Based on a XGboost Machine Learning
Aided Method: Performance and Validation,
RS(11), No. 14, 2019, pp. xx-yy.
DOI Link
1908
BibRef
Chang, X.[Xin],
Jin, T.Y.[Tao-Yong],
Yu, K.[Kegen],
Li, Y.W.[Yun-Wei],
Li, J.C.[Jian-Cheng],
Zhang, Q.A.[Qi-Ang],
Soil Moisture Estimation by GNSS Multipath Signal,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link
1911
BibRef
Calabia, A.[Andres],
Molina, I.[Iñigo],
Jin, S.G.[Shuang-Gen],
Soil Moisture Content from GNSS Reflectometry Using Dielectric
Permittivity from Fresnel Reflection Coefficients,
RS(12), No. 1, 2020, pp. xx-yy.
DOI Link
2001
BibRef
Wu, X.R.[Xue-Rui],
Ma, W.X.[Wen-Xiao],
Xia, J.M.[Jun-Ming],
Bai, W.H.[Wei-Hua],
Jin, S.G.[Shuang-Gen],
Calabia, A.[Andrés],
Spaceborne GNSS-R Soil Moisture Retrieval: Status, Development
Opportunities, and Challenges,
RS(13), No. 1, 2021, pp. xx-yy.
DOI Link
2101
BibRef
Dong, Z.[Zhounan],
Jin, S.G.[Shuang-Gen],
Evaluation of the Land GNSS-Reflected DDM Coherence on Soil Moisture
Estimation from CYGNSS Data,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Lv, J.C.[Ji-Chao],
Zhang, R.[Rui],
Tu, J.S.[Jin-Sheng],
Liao, M.J.[Ming-Jie],
Pang, J.[Jiatai],
Yu, B.[Bin],
Li, K.[Kui],
Xiang, W.[Wei],
Fu, Y.[Yin],
Liu, G.X.[Guo-Xiang],
A GNSS-IR Method for Retrieving Soil Moisture Content from Integrated
Multi-Satellite Data That Accounts for the Impact of Vegetation
Moisture Content,
RS(13), No. 13, 2021, pp. xx-yy.
DOI Link
2107
BibRef
Shi, Y.J.[Ya-Jie],
Ren, C.[Chao],
Yan, Z.H.[Zhi-Heng],
Lai, J.M.[Jian-Min],
High Spatial-Temporal Resolution Estimation of Ground-Based Global
Navigation Satellite System Interferometric Reflectometry (GNSS-IR)
Soil Moisture Using the Genetic Algorithm Back Propagation (GA-BP)
Neural Network,
IJGI(10), No. 9, 2021, pp. xx-yy.
DOI Link
2109
BibRef
Munoz-Martin, J.F.[Joan Francesc],
Onrubia, R.[Raul],
Pascual, D.[Daniel],
Park, H.[Hyuk],
Pablos, M.[Miriam],
Camps, A.[Adriano],
Rüdiger, C.[Christoph],
Walker, J.[Jeffrey],
Monerris, A.[Alessandra],
Single-Pass Soil Moisture Retrieval Using GNSS-R at L1 and L5 Bands:
Results from Airborne Experiment,
RS(13), No. 4, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Munoz-Martin, J.F.[Joan Francesc],
Llaveria, D.[David],
Herbert, C.[Christoph],
Pablos, M.[Miriam],
Park, H.[Hyuk],
Camps, A.[Adriano],
Soil Moisture Estimation Synergy Using GNSS-R and L-Band Microwave
Radiometry Data from FSSCat/FMPL-2,
RS(13), No. 5, 2021, pp. xx-yy.
DOI Link
2103
BibRef
Xu, H.Z.[Hong-Zhang],
Yuan, Q.Q.[Qiang-Qiang],
Li, T.W.[Tong-Wen],
Shen, H.F.[Huan-Feng],
Zhang, L.P.[Liang-Pei],
Jiang, H.T.[Hong-Tao],
Quality Improvement of Satellite Soil Moisture Products by Fusing
with In-Situ Measurements and GNSS-R Estimates in the Western
Continental U.S.,
RS(10), No. 9, 2018, pp. xx-yy.
DOI Link
1810
BibRef
Edokossi, K.[Komi],
Calabia, A.[Andres],
Jin, S.G.[Shuang-Gen],
Molina, I.[Iñigo],
GNSS-Reflectometry and Remote Sensing of Soil Moisture:
A Review of Measurement Techniques, Methods, and Applications,
RS(12), No. 4, 2020, pp. xx-yy.
DOI Link
2003
BibRef
Azemati, A.[Amir],
Melebari, A.[Amer],
Campbell, J.D.[James D.],
Walker, J.P.[Jeffrey P.],
Moghaddam, M.[Mahta],
GNSS-R Soil Moisture Retrieval for Flat Vegetated Surfaces Using a
Physics-Based Bistatic Scattering Model and Hybrid Global/Local
Optimization,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Roberts, T.M.[Thomas Maximillian],
Colwell, I.[Ian],
Chew, C.[Clara],
Lowe, S.[Stephen],
Shah, R.[Rashmi],
A Deep-Learning Approach to Soil Moisture Estimation with GNSS-R,
RS(14), No. 14, 2022, pp. xx-yy.
DOI Link
2208
BibRef
Chen, S.Z.[Si-Zhe],
Yan, Q.Y.[Qing-Yun],
Jin, S.G.[Shuang-Gen],
Huang, W.M.[Wei-Min],
Chen, T.X.[Tie-Xi],
Jia, Y.[Yan],
Liu, S.[Shuci],
Cao, Q.[Qing],
Soil Moisture Retrieval from the CyGNSS Data Based on a Bilinear
Regression,
RS(14), No. 9, 2022, pp. xx-yy.
DOI Link
2205
BibRef
Jia, Y.[Yan],
Jin, S.G.[Shuang-Gen],
Savi, P.[Patrizia],
Yan, Q.Y.[Qing-Yun],
Li, W.[Wenmei],
Modeling and Theoretical Analysis of GNSS-R Soil Moisture Retrieval
Based on the Random Forest and Support Vector Machine Learning
Approach,
RS(12), No. 22, 2020, pp. xx-yy.
DOI Link
2011
BibRef
Yin, C.[Cong],
Huang, F.X.[Fei-Xiong],
Xia, J.M.[Jun-Ming],
Bai, W.H.[Wei-Hua],
Sun, Y.Q.[Yue-Qiang],
Yang, G.[Guanglin],
Zhai, X.C.[Xiao-Chun],
Xu, N.[Na],
Hu, X.Q.[Xiu-Qing],
Zhang, P.[Peng],
Wang, J.S.[Jin-Song],
Du, Q.F.[Qi-Fei],
Wang, X.Y.[Xian-Yi],
Cai, Y.R.[Yue-Rong],
Soil Moisture Retrieval from Multi-GNSS Reflectometry on FY-3E
GNOS-II by Land Cover Classification,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link
2303
BibRef
Wang, Q.[Qi],
Sun, J.J.[Jiao-Jiao],
Chang, X.[Xin],
Jin, T.Y.[Tao-Yong],
Shang, J.G.[Jin-Guang],
Liu, Z.Y.[Zhi-Yong],
The Correction Method of Water and Fresnel Reflection Coefficient for
Soil Moisture Retrieved by CYGNSS,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Melebari, A.[Amer],
Campbell, J.D.[James D.],
Hodges, E.[Erik],
Moghaddam, M.[Mahta],
Improved Geometric Optics with Topography (IGOT) Model for GNSS-R
Delay-Doppler Maps Using Three-Scale Surface Roughness,
RS(15), No. 7, 2023, pp. 1880.
DOI Link
2304
Global navigation satellite system (GNSS)-reflectometry (GNSS-R)
delay-Doppler maps (DDMs)
BibRef
Munoz-Martin, J.F.[Joan Francesc],
Rodriguez-Alvarez, N.[Nereida],
Bosch-Lluis, X.[Xavier],
Oudrhiri, K.[Kamal],
Effective Surface Roughness Impact in Polarimetric GNSS-R Soil
Moisture Retrievals,
RS(15), No. 8, 2023, pp. 2013.
DOI Link
2305
BibRef
Zhang, T.L.[Tian-Long],
Yang, L.[Lei],
Nan, H.T.[Hong-Tao],
Yin, C.[Cong],
Sun, B.[Bo],
Yang, D.K.[Dong-Kai],
Hong, X.[Xuebao],
Lopez-Baeza, E.[Ernesto],
In-Situ GNSS-R and Radiometer Fusion Soil Moisture Retrieval Model
Based on LSTM,
RS(15), No. 10, 2023, pp. xx-yy.
DOI Link
2306
BibRef
Ding, Q.[Qin],
Liang, Y.[Yueji],
Liang, X.Y.[Xing-Yong],
Ren, C.[Chao],
Yan, H.B.[Hong-Bo],
Liu, Y.[Yintao],
Zhang, Y.[Yan],
Lu, X.J.[Xian-Jian],
Lai, J.M.[Jian-Min],
Hu, X.M.[Xin-Miao],
Soil Moisture Retrieval Using GNSS-IR Based on Empirical Modal
Decomposition and Cross-Correlation Satellite Selection,
RS(15), No. 13, 2023, pp. 3218.
DOI Link
2307
BibRef
Liu, Q.[Qi],
Zhang, S.C.[Shuang-Cheng],
Li, W.Q.[Wei-Qiang],
Nan, Y.[Yang],
Peng, J.[Jilun],
Ma, Z.M.[Zhong-Min],
Zhou, X.[Xin],
Using Robust Regression to Retrieve Soil Moisture from CyGNSS Data,
RS(15), No. 14, 2023, pp. 3669.
DOI Link
2307
BibRef
Hu, Q.F.[Qing-Feng],
Li, Y.F.[Yi-Fan],
Liu, W.K.[Wen-Kai],
Lu, W.Q.[Wei-Qiang],
Hai, H.X.[Hong-Xin],
He, P.P.[Pei-Pei],
Liu, X.L.[Xian-Lin],
Ma, K.F.[Kai-Feng],
Zhu, D.T.[Dan-Tong],
Wang, P.[Peng],
Kou, Y.C.[Ying-Chao],
Research on Soil Moisture Inversion Method for Canal Slope of the
Middle Route Project of the South to North Water Transfer Based on
GNSS-R and Deep Learning,
RS(15), No. 17, 2023, pp. 4340.
DOI Link
2310
BibRef
Wei, H.H.[Hao-Han],
Yang, X.F.[Xiao-Feng],
Pan, Y.W.[Yu-Wei],
Shen, F.[Fei],
GNSS-IR Soil Moisture Inversion Derived from Multi-GNSS and
Multi-Frequency Data Accounting for Vegetation Effects,
RS(15), No. 22, 2023, pp. 5381.
DOI Link
2311
BibRef
Yang, C.Z.[Chang-Zhi],
Mao, K.[Kebiao],
Guo, Z.H.[Zhong-Hua],
Shi, J.C.[Jian-Cheng],
Bateni, S.M.[Sayed M.],
Yuan, Z.J.[Zi-Jin],
Review of GNSS-R Technology for Soil Moisture Inversion,
RS(16), No. 7, 2024, pp. 1193.
DOI Link
2404
BibRef
Hou, Z.[Zhaolu],
Pu, Z.X.[Zhao-Xia],
Assessing CYGNSS Satellite Soil Moisture Data for Drought Monitoring
with Multiple Datasets and Indicators,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link
2401
BibRef
Wernicke, L.J.[Liza J.],
Chew, C.C.[Clara C.],
Small, E.E.[Eric E.],
Spatially Interpolated CYGNSS Data Improve Downscaled 3 km
SMAP/CYGNSS Soil Moisture,
RS(16), No. 16, 2024, pp. 2924.
DOI Link
2408
BibRef
Jiang, Y.[Yao],
Zhang, R.[Rui],
Sun, B.[Bo],
Wang, T.Y.[Tian-Yu],
Zhang, B.[Bo],
Tu, J.S.[Jin-Sheng],
Nie, S.[Shihai],
Jiang, H.[Hang],
Chen, K.[Kangyi],
GNSS-IR Soil Moisture Retrieval Using Multi-Satellite Data Fusion
Based on Random Forest,
RS(16), No. 18, 2024, pp. 3428.
DOI Link
2410
BibRef
Lwin, A.,
Yang, D.,
Hong, X.,
Shamsabadi, S.C.[S. Cheraghi],
Ahmed, W.A.,
Spaceborne GNSS-R Retrieving on Global Soil Moisture Approached By
Support Vector Machine Learning,
ISPRS20(B3:605-610).
DOI Link
2012
BibRef
Chapter on Remote Sensing General Issue, Land Use, Land Cover continues in
Soil Moisture, Sentinel 1, 2, 3, Data .