Hsu, K.J.[Kuang-Jui],
Lin, Y.Y.[Yen-Yu],
Chuang, Y.Y.[Yung-Yu],
Augmented Multiple Instance Regression for Inferring Object Contours
in Bounding Boxes,
IP(23), No. 4, April 2014, pp. 1722-1736.
IEEE DOI
1404
image segmentation. How to acquire ground truth for semantic segmentation.
BibRef
Marmanis, D.,
Schindler, K.,
Wegner, J.D.,
Galliani, S.,
Datcu, M.,
Stilla, U.,
Classification with an edge:
Improving semantic image segmentation with boundary detection,
PandRS(135), No. Supplement C, 2018, pp. 158-172.
Elsevier DOI
1712
BibRef
Zhou, H.[Hao],
Han, A.[Anqi],
Yang, H.D.[Hao-Dong],
Zhang, J.[Jun],
Edge gradient feature and long distance dependency for image semantic
segmentation,
IET-CV(13), No. 1, February 2019, pp. 53-60.
DOI Link
1902
BibRef
Chen, Y.[Yifu],
Dapogny, A.[Arnaud],
Cord, M.[Matthieu],
SEMEDA: Enhancing segmentation precision with semantic edge aware
loss,
PR(108), 2020, pp. 107557.
Elsevier DOI
2008
Semantic segmentation, Loss function
BibRef
Zhou, Q.[Quan],
Qiang, Y.[Yong],
Mo, Y.W.[Yu-Wei],
Wu, X.[Xiaofu],
Latecki, L.J.[Longin Jan],
BANet: Boundary-Assistant Encoder-Decoder Network for Semantic
Segmentation,
ITS(23), No. 12, December 2022, pp. 25259-25270.
IEEE DOI
2212
Semantics, Image segmentation, Feature extraction, Convolution,
Shape, Task analysis, Decoding, Semantic segmentation, dilated-ResNet101
BibRef
Huang, Z.[Zhou],
Xiang, T.Z.[Tian-Zhu],
Chen, H.X.[Huai-Xin],
Dai, H.[Hang],
Scribble-based boundary-aware network for weakly supervised salient
object detection in remote sensing images,
PandRS(191), 2022, pp. 290-301.
Elsevier DOI
2208
Salient object detection, Saliency detection,
Scribble annotation, Weakly supervised, Remote sensing dataset
BibRef
Wu, D.Y.[Dong-Yue],
Guo, Z.[Zilin],
Li, A.[Aoyan],
Yu, C.Q.[Chang-Qian],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
Conditional Boundary Loss for Semantic Segmentation,
IP(32), 2023, pp. 3717-3731.
IEEE DOI
2307
Task analysis, Semantic segmentation, Optimization, Semantics,
Training, Noise measurement, Feature extraction,
boundary
BibRef
Shi, M.[Min],
Deng, W.Z.[Wei-Zhao],
Yi, Q.M.[Qing-Ming],
Liu, W.P.[Wei-Ping],
Luo, A.[Aiwen],
Salient-Boundary-Guided Pseudo-Pixel Supervision for
Weakly-Supervised Semantic Segmentation,
SPLetters(31), 2024, pp. 86-90.
IEEE DOI
2401
BibRef
Zhou, Q.[Quan],
Wang, L.J.[Lin-Jie],
Gao, G.[Guangwei],
Kang, B.[Bin],
Ou, W.H.[Wei-Hua],
Lu, H.M.[Hui-Min],
Boundary-Guided Lightweight Semantic Segmentation With Multi-Scale
Semantic Context,
MultMed(26), 2024, pp. 7887-7900.
IEEE DOI
2405
Semantics, Semantic segmentation, Electronic countermeasures, Head,
Computer architecture, Computational modeling,
convolutional neural networks (CNNs)
BibRef
Dong, L.[Lusen],
Wang, F.[Fei],
Zheng, J.[Jin],
Context and Apparent Features Aggregation Network for Semantic
Segmentation,
ICPR22(3858-3864)
IEEE DOI
2212
Convolution, Semantic segmentation, Aggregates,
Image edge detection, Neural networks, Feature extraction, Transformers
BibRef
Sun, Z.T.[Zi-Tang],
Kamata, S.I.[Sei-Ichiro],
Wang, R.J.[Ruo-Jing],
Semantic Segmentation Refinement Using Entropy and Boundary-guided
Monte Carlo Sampling and Directed Regional Search,
ICPR21(3931-3938)
IEEE DOI
2105
Monte Carlo methods, Semantics, Logic gates, Prediction algorithms,
Search problems, Entropy, Classification algorithms
BibRef
Dhingra, N.[Naina],
Chogovadze, G.[George],
Kunz, A.[Andreas],
Border-SegGCN: Improving Semantic Segmentation by Refining the Border
Outline using Graph Convolutional Network,
GSP-CV21(865-875)
IEEE DOI
2112
Computational modeling, Semantics,
Refining, Computer architecture, Prediction algorithms
BibRef
Liu, Y.[Yahao],
Deng, J.H.[Jin-Hong],
Gao, X.C.[Xin-Chen],
Li, W.[Wen],
Duan, L.X.[Li-Xin],
BAPA-Net: Boundary Adaptation and Prototype Alignment for
Cross-domain Semantic Segmentation,
ICCV21(8781-8791)
IEEE DOI
2203
Image segmentation, Adaptation models, Semantics, Prototypes,
Benchmark testing, Convolutional neural networks,
grouping and shape
BibRef
Chen, L.[Liyi],
Wu, W.W.[Wei-Wei],
Fu, C.C.[Chen-Chen],
Han, X.[Xiao],
Zhang, Y.T.[Yun-Tao],
Weakly Supervised Semantic Segmentation with Boundary Exploration,
ECCV20(XXVI:347-362).
Springer DOI
2011
BibRef
Ratajczak, R.[Rémi],
Crispim, C.[Carlos],
Fervers, B.[Béatrice],
Faure, E.[Elodie],
Tougne, L.[Laure],
Semantic Segmentation Post-processing with Colorized Pairwise
Potentials and Deep Edges,
IPTA20(1-6)
IEEE DOI
2206
Image segmentation, Image color analysis, Image edge detection,
Semantics, Gray-scale, Tools, Task analysis, semantic segmentation,
deep edges
BibRef
Zhen, M.,
Wang, J.,
Zhou, L.,
Li, S.,
Shen, T.,
Shang, J.,
Fang, T.,
Quan, L.,
Joint Semantic Segmentation and Boundary Detection Using Iterative
Pyramid Contexts,
CVPR20(13663-13672)
IEEE DOI
2008
Pattern recognition
BibRef
Marin, D.,
He, Z.,
Vajda, P.,
Chatterjee, P.,
Tsai, S.,
Yang, F.,
Boykov, Y.Y.,
Efficient Segmentation: Learning Downsampling Near Semantic
Boundaries,
ICCV19(2131-2141)
IEEE DOI
2004
image sampling, image segmentation,
learning (artificial intelligence), semantic boundaries, Image resolution
BibRef
Zhu, Y.,
Tian, Y.,
Metaxas, D.,
Dollár, P.,
Semantic Amodal Segmentation,
CVPR17(3001-3009)
IEEE DOI
1711
Image edge detection, Image segmentation, Object detection,
Semantics, Tools, Visualization
BibRef
Huang, Q.[Qin],
Xia, C.Y.[Chun-Yang],
Zheng, W.[Wenchao],
Song, Y.H.[Yu-Hang],
Xu, H.[Hao],
Kuo, C.C.J.[C.C. Jay],
Object Boundary Guided Semantic Segmentation,
ACCV16(I: 197-212).
Springer DOI
1704
BibRef
Isola, P.[Phillip],
Zoran, D.[Daniel],
Krishnan, D.[Dilip],
Adelson, E.H.[Edward H.],
Crisp Boundary Detection Using Pointwise Mutual Information,
ECCV14(III: 799-814).
Springer DOI
1408
Between semantic objects.
BibRef
Czuni, L.[Laszlo],
Kiss, P.J.[Peter Jozsef],
Lipovits, A.[Agnes],
Gal, M.[Monika],
Lightweight mobile object recognition,
ICIP14(3426-3428)
IEEE DOI
1502
Cameras
CEDD (Color and Edge Directivity Descriptor).
BibRef
Bergbauer, J.,
Nieuwenhuis, C.[Claudia],
Souiai, M.,
Cremers, D.[Daniel],
Proximity Priors for Variational Semantic Segmentation and
Recognition,
GMSU13(15-21)
IEEE DOI
1403
See also Midrange Geometric Interactions for Semantic Segmentation. convex programming
BibRef
Chapter on 2-D Region Segmentation Techniques, Snakes, Active Contours continues in
Domain Adaption for Semantic Segmentation .