Cheng, H.H.,
Shaw, B.D.,
Palen, J.,
Lin, B.,
Chen, B.,
Wang, Z.,
Development and Field Test of a Laser-Based Nonintrusive Detection
System for Identification of Vehicles on the Highway,
ITS(6), No. 2, June 2005, pp. 147-155.
IEEE Abstract.
0506
BibRef
Wang, T.[Tao],
Zhu, Z.G.[Zhi-Gang],
Taylor, C.N.[Clark N.],
A multimodal temporal panorama approach for moving vehicle detection,
reconstruction and classification,
CVIU(117), No. 12, 2013, pp. 1724-1735.
Elsevier DOI
1310
BibRef
Earlier: A1, A2, Only:
Real time moving vehicle detection and reconstruction for improving
classification,
WACV12(497-502).
IEEE DOI
1203
Laser-Doppler vibrometry
See also Intelligent multimodal and hyperspectral sensing for real-time moving target tracking.
BibRef
Wender, S.,
Dietmayer, K.,
3D vehicle detection using a laser scanner and a video camera,
IET-ITS(2), No. 2, 2008, pp. 105-112.
DOI Link
1204
BibRef
Zhang, Z.X.[Zhao-Xiang],
Tan, T.N.[Tie-Niu],
Huang, K.Q.[Kai-Qi],
Wang, Y.H.[Yun-Hong],
Three-Dimensional Deformable-Model-Based Localization and Recognition
of Road Vehicles,
IP(21), No. 1, January 2012, pp. 1-13.
IEEE DOI
1112
BibRef
Earlier: A1, A3, A2, A4:
3D Model Based Vehicle Tracking Using Gradient Based Fitness Evaluation
under Particle Filter Framework,
ICPR10(1771-1774).
IEEE DOI
1008
See also Model-Based Localization and Recognition of Road Vehicles.
BibRef
Hu, Z.C.[Zhen-Cheng],
Wang, C.H.[Chen-Hao],
Uchimura, K.[Keiichi],
3D Vehicle Extraction and Tracking from Multiple Viewpoints for Traffic
Monitoring by using Probability Fusion Map,
ELCVIA(7), No. 2, 2008, pp. xx-yy.
DOI Link
0903
BibRef
Misovic, D.S.,
Milic, S.D.,
Durovic, Z.M.,
Vessel Detection Algorithm Used in a Laser Monitoring System of the
Lock Gate Zone,
ITS(17), No. 2, February 2016, pp. 430-440.
IEEE DOI
1602
Detection algorithms
BibRef
Kim, S.,
Kim, H.,
Yoo, W.,
Huh, K.,
Sensor Fusion Algorithm Design in Detecting Vehicles Using Laser
Scanner and Stereo Vision,
ITS(17), No. 4, April 2016, pp. 1072-1084.
IEEE DOI
1604
Algorithm design and analysis
BibRef
Yu, Y.T.[Yong-Tao],
Li, J.[Jonathan],
Guan, H.Y.[Hai-Yan],
Wang, C.[Cheng],
Automated Detection of Three-Dimensional Cars in Mobile Laser
Scanning Point Clouds Using DBM-Hough-Forests,
GeoRS(54), No. 7, July 2016, pp. 4130-4142.
IEEE DOI
1606
Automobiles
See also Marked Point Process for Automated Tree Detection from Mobile Laser Scanning Point Cloud Data, A.
See also Semiautomated Extraction of Street Light Poles From Mobile LiDAR Point-Clouds.
BibRef
Hata, A.Y.,
Wolf, D.F.,
Feature Detection for Vehicle Localization in Urban Environments
Using a Multilayer LIDAR,
ITS(17), No. 2, February 2016, pp. 420-429.
IEEE DOI
1602
Asphalt
BibRef
Asvadi, A.[Alireza],
Garrote, L.[Luis],
Premebida, C.[Cristiano],
Peixoto, P.[Paulo],
Nunes, U.J.[Urbano J.],
Multimodal vehicle detection: fusing 3D-LIDAR and color camera data,
PRL(115), 2018, pp. 20-29.
Elsevier DOI
1812
Multimodal data, Deep learning, Object detection, Fusion
BibRef
Liu, K.,
Wang, W.,
Tharmarasa, R.,
Wang, J.,
Dynamic Vehicle Detection With Sparse Point Clouds Based on PE-CPD,
ITS(20), No. 5, May 2019, pp. 1964-1977.
IEEE DOI
1905
Vehicle dynamics, Pose estimation,
Vehicle detection, Computational modeling, Dynamics, Laser radar,
pose estimation
BibRef
John, V.,
Liu, Z.,
Mita, S.,
Xu, Y.,
Stereo vision-based vehicle localization in point cloud maps using
multiswarm particle swarm optimization,
SIViP(13), No. 4, June 2019, pp. 805-812.
WWW Link.
1906
BibRef
Nguyen, V.D.,
Tran, D.T.,
Byun, J.Y.,
Jeon, J.W.,
Real-Time Vehicle Detection Using an Effective Region Proposal-Based
Depth and 3-Channel Pattern,
ITS(20), No. 10, October 2019, pp. 3634-3646.
IEEE DOI
1910
Proposals, Vehicle detection, Real-time systems, Object detection,
Neural networks, Cameras, Deep learning, region proposal network, local pattern
BibRef
An, J.[Jhonghyun],
Kim, E.T.[Eun-Tai],
Novel Vehicle Bounding Box Tracking Using a Low-End 3D Laser Scanner,
ITS(22), No. 6, June 2021, pp. 3403-3419.
IEEE DOI
2106
Target tracking, Size measurement,
Radar tracking, Position measurement, Lasers, Laser scanner,
vehicle bounding box tracking
BibRef
Coenen, M.[Max],
Rottensteiner, F.[Franz],
Pose estimation and 3D reconstruction of vehicles from stereo-images
using a subcategory-aware shape prior,
PandRS(181), 2021, pp. 27-47.
Elsevier DOI
2110
Vehicle detection, 3D vehicle reconstruction, Pose estimation,
Multi-branch CNN, Active shape model
BibRef
Wang, L.Y.[Lu-Yang],
Lan, J.H.[Jin-Hui],
Adaptive Polar-Grid Gaussian-Mixture Model for Foreground
Segmentation Using Roadside LiDAR,
RS(14), No. 11, 2022, pp. xx-yy.
DOI Link
2206
Roadside LiDAR for vehicles and pedestrians.
BibRef
Zhao, K.[Kun],
Ma, L.F.[Ling-Fei],
Meng, Y.[Yu],
Liu, L.[Li],
Wang, J.[Junbo],
Junior, J.M.[José Marcato],
Gonçalves, W.N.[Wesley Nunes],
Li, J.[Jonathan],
3D Vehicle Detection Using Multi-Level Fusion from Point Clouds and
Images,
ITS(23), No. 9, September 2022, pp. 15146-15154.
IEEE DOI
2209
Point cloud compression, Feature extraction, Detectors, Proposals,
Shape, 3D vehicle detection, deep learning, autonomous driving, data fusion
BibRef
Zhou, S.L.[Shang-Lian],
Xu, H.[Hao],
Zhang, G.H.[Guo-Hui],
Ma, T.W.[Tian-Wei],
Yang, Y.[Yin],
Leveraging Deep Convolutional Neural Networks Pre-Trained on
Autonomous Driving Data for Vehicle Detection from Roadside LiDAR
Data,
ITS(23), No. 11, November 2022, pp. 22367-22377.
IEEE DOI
2212
Laser radar, Vehicle detection, Autonomous vehicles,
Feature extraction, Point cloud compression, Training, roadside LiDAR data
BibRef
Jin, X.J.[Xian-Jian],
Yang, H.[Hang],
He, X.K.[Xiong-Kui],
Liu, G.H.[Guo-Hua],
Yan, Z.[Zeyuan],
Wang, Q.[Qikang],
Robust LiDAR-Based Vehicle Detection for On-Road Autonomous Driving,
RS(15), No. 12, 2023, pp. xx-yy.
DOI Link
2307
BibRef
Zhang, J.[Jian],
Xie, H.[Hongtu],
Zhang, L.[Lin],
Lu, Z.[Zheng],
Information Extraction and Three-Dimensional Contour Reconstruction
of Vehicle Target Based on Multiple Different Pitch-Angle Observation
Circular Synthetic Aperture Radar Data,
RS(16), No. 2, 2024, pp. 401.
DOI Link
2402
BibRef
Hwangbo, S.[Sanghyeok],
Cho, S.[Seonmin],
Kim, J.[Junho],
Lee, S.[Seongwook],
Efficient Target Classification Based on Vehicle Volume Estimation in
High-Resolution Radar Systems,
RS(16), No. 9, 2024, pp. 1522.
DOI Link
2405
Point cloud from radar.
BibRef
Zhuang, Y.[Yuan],
Li, Q.[Qipeng],
Chen, Y.W.[Yi-Wen],
Huai, J.Z.[Jian-Zhu],
Li, M.[Miao],
Ma, T.B.[Tian-Bing],
Tang, Y.F.[Yu-Fei],
Liang, X.L.[Xin-Lian],
3D-SeqMOS: A Novel Sequential 3D Moving Object Segmentation in
Autonomous Driving,
ITS(25), No. 8, August 2024, pp. 8782-8795.
IEEE DOI
2408
Point cloud compression, Object segmentation,
Simultaneous localization and mapping, Odometry,
LiDAR-SLAM
BibRef
Kim, J.[Jinhyeong],
Kim, Y.[Youngseok],
Kum, D.[Dongsuk],
Low-level Sensor Fusion for 3d Vehicle Detection Using Radar
Range-azimuth Heatmap and Monocular Image,
ACCV20(III:388-402).
Springer DOI
2103
BibRef
Saleh, K.,
Abobakr, A.,
Attia, M.,
Iskander, J.,
Nahavandi, D.,
Hossny, M.,
Nahvandi, S.,
Domain Adaptation for Vehicle Detection from Bird's Eye View LiDAR
Point Cloud Data,
TASKCV19(3235-3242)
IEEE DOI
2004
neural nets, object detection, optical radar, radar computing,
radar imaging, vehicle detection, 3D LiDAR sensors,
sim2real
BibRef
Busch, S.,
Active Shape Model Precision Analysis of Vehicle Detection in 3d Lidar
Point Clouds,
Semantics3D19(21-26).
DOI Link
1912
BibRef
Nagy, B.[Balázs],
Benedek, C.[Csaba],
Real-Time Point Cloud Alignment for Vehicle Localization in a High
Resolution 3D Map,
CVRoads18(I:226-239).
Springer DOI
1905
BibRef
Coenen, M.,
Rottensteiner, F.,
Probabilistic Vehicle Reconstruction Using a Multi-Task CNN,
CVRSUAD19(822-831)
IEEE DOI
2004
convolutional neural nets, edge detection, image reconstruction,
image retrieval, learning (artificial intelligence), lighting,
Pose Estimation
BibRef
Coenen, M.,
Rottensteiner, F.,
Heipke, C.,
Detection And 3D Modelling of Vehicles From Terrestrial Stereo Image
Pairs,
Hannover17(505-512).
DOI Link
1805
BibRef
Bulatov, D.,
Schilling, H.,
Segmentation methods for detection of stationary vehicles in combined
elevation and optical data,
ICPR16(603-608)
IEEE DOI
1705
Adaptive optics, Automobiles, Image reconstruction,
Image segmentation, Optical distortion, Optical imaging,
Three-dimensional, displays
BibRef
Chabot, F.,
Chaouch, M.,
Rabarisoa, J.,
Teuliere, C.,
Chateau, T.,
Accurate 3D car pose estimation,
ICIP16(3807-3811)
IEEE DOI
1610
Automobiles
BibRef
Schlichting, A.,
Brenner, C.,
Vehicle Localization By Lidar Point Correlation Improved By Change
Detection,
ISPRS16(B1: 703-710).
DOI Link
1610
BibRef
Farrugia, T.[Trevor],
Barbarar, J.[Jonathan],
Pose Normalisation for 3D Vehicles,
CAIP15(I:235-245).
Springer DOI
1511
BibRef
Zia, M.Z.[Muhammad Zeeshan],
Stark, M.[Michael],
Schindler, K.[Konrad],
Are Cars Just 3D Boxes? Jointly Estimating the 3D Shape of Multiple
Objects,
CVPR14(3678-3685)
IEEE DOI
1409
3D object recognition; Scene understanding
BibRef
Lin, Y.L.[Yen-Liang],
Morariu, V.I.[Vlad I.],
Hsu, W.[Winston],
Davis, L.S.[Larry S.],
Jointly Optimizing 3D Model Fitting and Fine-Grained Classification,
ECCV14(IV: 466-480).
Springer DOI
1408
Car dataset.
BibRef
Hsiao, E.[Edward],
Sinha, S.N.[Sudipta N.],
Ramnath, K.[Krishnan],
Baker, S.[Simon],
Zitnick, L.[Larry],
Szeliski, R.S.[Richard S.],
Car make and model recognition using 3D curve alignment,
WACV14(1-1)
IEEE DOI
1406
BibRef
And: A3, A2, A6, A1, Only:
WACV14(285-292)
IEEE DOI
1406
Cameras
BibRef
Zheng, T.L.[Tan Lun],
Xia, L.M.[Li-Min],
Liu, Y.F.[Yan-Fei],
Segmentation of urban traffic scene based on 3D structure,
IASP11(240-243).
IEEE DOI
1112
BibRef
Buch, N.[Norbert],
Orwell, J.[James],
Velastin, S.A.[Sergio A.],
3d Extended Histogram of Oriented Gradients (3DHoG) for Classification
of Road Users in Urban Scenes,
BMVC09(xx-yy).
PDF File.
PDF File.
WWW Link.
WWW Link.
0909
3D descriptions to recognize pedestrians and cars.
BibRef
Mohottala, S.[Shirmila],
Ono, S.[Shintaro],
Kagesawa, M.[Masataka],
Ikeuchi, K.[Katsushi],
Fusion of a camera and a laser range sensor for vehicle recognition,
OTCBVS09(16-23).
IEEE DOI
0906
BibRef
Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Vehicle Counting .