Kakoty, N.M.[Nayan M.],
Hazarika, S.M.[Shyamanta M.],
Development of an electromyographic controlled biomimetic prosthetic
hand,
IJCVR(4), No. 1-2, 2014, pp. 115-133.
DOI Link
1403
BibRef
Zivanovic, M.,
Time-Varying Multicomponent Signal Modeling for Analysis of Surface
EMG Data,
SPLetters(21), No. 6, June 2014, pp. 692-696.
IEEE DOI
1404
Discrete wavelet transforms
BibRef
Farina, D.,
Holobar, A.,
Human-Machine Interfacing by Decoding the Surface Electromyogram,
SPMag(32), No. 1, January 2015, pp. 115-120.
IEEE DOI
1502
Life Sciences.
biomedical electrodes
BibRef
Farina, D.,
Holobar, A.,
Characterization of Human Motor Units From Surface EMG Decomposition,
PIEEE(104), No. 2, February 2016, pp. 353-373.
IEEE DOI
1601
Biomedical signal processing
BibRef
Arjunan, S.P.[Sridhar Poosapadi],
Kumar, D.K.[Dinesh Kant],
Wheeler, K.[Katherine],
Shimada, H.[Hirokazu],
Spectral properties of surface electromyogram signal and change in
muscle conduction velocity during isometric muscle contraction,
SIViP(9), No. 2, February 2015, pp. 261-266.
Springer DOI
1503
BibRef
Lopes, P.,
Baudisch, P.,
Interactive Systems Based on Electrical Muscle Stimulation,
Computer(50), No. 10, 2017, pp. 28-35.
IEEE DOI
1710
electromyography, interactive systems, muscle, EMS,
electrical muscle stimulation, guided training,
immersive virtual experiences, information access,
interactive systems, mechanical actuation,
BibRef
Tsumugiwa, T.,
Shibata, A.,
Yokogawa, R.,
Analysis of Upper-Extremity Motion and Muscle and Brain Activation
During Machine Operation in Consideration of Mass and Friction,
HMS(48), No. 2, April 2018, pp. 161-171.
IEEE DOI
1804
Brain, Extremities, Force, Friction, Impedance, Muscles, Task analysis,
Brain activity, electromyography (EMG),
near-infrared spectroscopy (NIRS)
BibRef
Hazarika, A.[Anil],
Dutta, L.[Lachit],
Boro, M.[Meenakshi],
Barthakur, M.[Mausumi],
Bhuyan, M.[Manabendra],
An automatic feature extraction and fusion model:
Application to electromyogram (EMG) signal classification,
MultInfoRetr(8), No. 3, September 2018, pp. 173-186.
Springer DOI
1809
BibRef
Yang, W.[Wei],
Yang, D.P.[Da-Peng],
Liu, Y.[Yu],
Liu, H.[Hong],
Decoding Simultaneous Multi-DOF Wrist Movements From Raw EMG Signals
Using a Convolutional Neural Network,
HMS(49), No. 5, October 2019, pp. 411-420.
IEEE DOI
1909
Electromyography, Wrist, Training, Decoding, Feature extraction, Force,
Convolutional neural network (CNN),
simultaneous control
BibRef
Qin, Z.,
Jiang, Z.,
Chen, J.,
Hu, C.,
Ma, Y.,
sEMG-Based Tremor Severity Evaluation for Parkinson's Disease Using a
Light-Weight CNN,
SPLetters(26), No. 4, April 2019, pp. 637-641.
IEEE DOI
1903
Training, Testing, Parkinson's disease, Task analysis,
Feature extraction, Hospitals, Muscles, Parkinson's Disease,
similarity learning
BibRef
Tabatabaei, S.M.[Sayed Mohamad],
Chalechale, A.[Abdolah],
Local binary patterns for noise-tolerant sEMG classification,
SIViP(13), No. 3, April 2019, pp. 491-498.
WWW Link.
1904
BibRef
Loconsole, C.[Claudio],
Cascarano, G.D.[Giacomo Donato],
Brunetti, A.[Antonio],
Trotta, G.F.[Gianpaolo Francesco],
Losavio, G.[Giacomo],
Bevilacqua, V.[Vitoantonio],
di Sciascio, E.[Eugenio],
A model-free technique based on computer vision and sEMG for
classification in Parkinson's disease by using computer-assisted
handwriting analysis,
PRL(121), 2019, pp. 28-36.
Elsevier DOI
1904
Handwriting analysis, Neurodegenerative disease,
Parkinson's disease, Neural Network, SVM
BibRef
Jose, S.[Shobha],
George, S.T.[S. Thomas],
Roopchand, P.S.,
DWT-based electromyogram signal classification using maximum
likelihood-estimated features for neurodiagnostic applications,
SIViP(14), No. 3, April 2020, pp. 601-608.
WWW Link.
2004
BibRef
Hagengruber, A.,
Leipscher, U.,
Eskofier, B.M.,
Vogel, J.,
Electromyography for Teleoperated Tasks in Weightlessness,
HMS(51), No. 2, April 2021, pp. 130-140.
IEEE DOI
2103
Robots, Task analysis, Muscles, Electromyography,
Aerospace electronics, Training, Space missions,
weightlessness
BibRef
Wang, Z.P.[Zhong-Peng],
He, B.B.[Bei-Bei],
Zhou, Y.J.[Yi-Jie],
Chen, L.[Long],
Gu, B.[Bin],
Liu, S.[Shuang],
Xu, M.[Minpeng],
He, F.[Feng],
Ming, D.[Dong],
Incorporating EEG and EMG Patterns to Evaluate BCI-Based Long-Term
Motor Training,
HMS(52), No. 4, August 2022, pp. 648-657.
IEEE DOI
2208
Electromyography, Electroencephalography, Training, Task analysis,
Electrodes, Couplings, Visualization, Brain-computer interface,
transfer entropy
BibRef
Bao, T.Z.[Tian-Zhe],
Zaidi, S.A.R.[Syed Ali Raza],
Xie, S.Q.[Sheng Quan],
Yang, P.F.[Peng-Fei],
Zhang, Z.Q.[Zhi-Qiang],
CNN Confidence Estimation for Rejection-Based Hand Gesture
Classification in Myoelectric Control,
HMS(52), No. 1, February 2022, pp. 99-109.
IEEE DOI
2201
Convolutional neural networks, Estimation, Neural networks,
Entropy, Linear programming, Task analysis, Optimization,
surface electromyography (sEMG)
BibRef
Yi, C.Z.[Chun-Zhi],
Jiang, F.[Feng],
Zhang, S.P.[Sheng-Ping],
Guo, H.[Hao],
Yang, C.[Chifu],
Ding, Z.[Zhen],
Wei, B.[Baichun],
Lan, X.Y.[Xiang-Yuan],
Zhou, H.Y.[Hui-Yu],
Continuous Prediction of Lower-Limb Kinematics From Multi-Modal
Biomedical Signals,
CirSysVideo(32), No. 5, May 2022, pp. 2592-2602.
IEEE DOI
2205
Kinematics, Electromyography, Feature extraction, Delays,
Prediction algorithms, Exoskeletons, Predictive models,
long short-term memory
BibRef
Liu, J.B.[Jin-Biao],
Tan, G.S.[Gan-Sheng],
Wang, J.X.[Ji-Xian],
Wei, Y.[Yina],
Sheng, Y.X.[Yi-Xuan],
Chang, H.[Hui],
Xie, Q.[Qing],
Liu, H.H.[Hong-Hai],
Closed-Loop Construction and Analysis of Cortico-Muscular-Cortical
Functional Network After Stroke,
MedImg(41), No. 6, June 2022, pp. 1575-1586.
IEEE DOI
2206
Muscles, Brain modeling, Frequency-domain analysis,
Electroencephalography, Couplings, Electromyography, Hospitals,
repetitive transcranial magnetic stimulation
BibRef
Zou, Y.X.[Yong-Xiang],
Cheng, L.[Long],
Han, L.J.[Li-Jun],
Li, Z.W.[Zheng-Wei],
Song, L.P.[Lu-Ping],
Decoding Electromyographic Signal With Multiple Labels for Hand
Gesture Recognition,
SPLetters(30), 2023, pp. 483-487.
IEEE DOI
2305
Feature extraction, Gesture recognition, Decoding, Aggregates,
Muscles, Hospitals, Graph neural networks, Electromyogram decoding,
multiple labels
BibRef
Guo, W.Y.[Wei-Yu],
Jiang, N.[Ning],
Farina, D.[Dario],
Su, J.Y.[Jing-Yong],
Wang, Z.[Zheng],
Lin, C.[Chuang],
Xiong, H.[Hui],
Multi-Attention Feature Fusion Network for Accurate Estimation of
Finger Kinematics From Surface Electromyographic Signals,
HMS(53), No. 3, June 2023, pp. 512-519.
IEEE DOI
2306
Convolution, Smoothing methods, Long short term memory,
Logic gates, Feature extraction, Kinematics, Estimation,
surface EMG
BibRef
Omisore, O.M.[Olatunji Mumini],
Akinyemi, T.O.[Toluwanimi Oluwadara],
Du, W.J.[Wen-Jing],
Duan, W.K.[Wen-Ke],
Orji, R.[Rita],
Do, T.N.[Thanh Nho],
Wang, L.[Lei],
Weighting-Based Deep Ensemble Learning for Recognition of
Interventionalists' Hand Motions During Robot-Assisted Intravascular
Catheterization,
HMS(53), No. 1, February 2023, pp. 215-227.
IEEE DOI
2301
Feature extraction, Catheterization, Motion segmentation,
Navigation, Surgery, Robot sensing systems, Manuals, Deep learning,
surface electro- myography (sEMG) control
BibRef
Wang, Z.F.[Ze-Feng],
Yao, J.F.[Jun-Feng],
Xu, M.Y.[Mei-Yan],
Jiang, M.[Min],
Su, J.S.[Jin-Song],
Transformer-based network with temporal depthwise convolutions for
sEMG recognition,
PR(145), 2024, pp. 109967.
Elsevier DOI
2311
Surface electromyography, Feature learning,
Gesture recognition, Transformer, Self-attention,
Temporal depthwise convolution
BibRef
Jose, S.[Shobha],
Selvaraj, T.G.[Thomas George],
Samuel, K.[Kenneth],
Philip, J.T.[Jobin T.],
Jothiraj, S.N.[Sairamya Nanjappan],
Pandian, S.M.S.[Subathra Muthu Swamy],
Handiru, V.S.[Vikram Shenoy],
Suviseshamuthu, E.S.[Easter S.],
Intramuscular EMG classifier for detecting myopathy and neuropathy,
IJIST(33), No. 2, 2023, pp. 659-669.
DOI Link
2303
center symmetric local binary pattern, classification,
electromyography, majority voting, neuromuscular disorders
BibRef
Kusuru, D.[Durgesh],
Turlapaty, A.C.[Anish C.],
Thakur, M.[Mainak],
An Improved Compound Gaussian Model for Bivariate Surface EMG Signals
Related to Strength Training,
HMS(55), No. 1, February 2025, pp. 58-70.
IEEE DOI
2502
Muscles, Electromyography, Compounds, Random variables,
Adaptation models, Context modeling, Training, Recruitment, Motors,
surface electromyography (sEMG)
BibRef
Wang, W.H.[Wei-Hao],
Liu, Y.[Yan],
Song, F.[Fanghao],
Lu, J.Y.[Jing-Yu],
Qu, J.N.[Jia-Ning],
Guo, J.Q.[Jun-Qing],
Huang, J.M.[Jin-Ming],
CGMV-EGR: A multimodal fusion framework for electromyographic gesture
recognition,
PR(162), 2025, pp. 111387.
Elsevier DOI
2503
Multimodal fusion, Surface electromyography,
Gesture recognition, Gated recurrent unit, Vision transformer
BibRef
Fonal, K.,
Zdunek, R.,
Wolczowski, A.,
Feature-Fusion HALS-based Algorithm for Linked CP Decomposition Model
in Application to Joint EMG/MMG Signal Classification,
ICPR18(928-933)
IEEE DOI
1812
Tensile stress, Feature extraction, Electromyography,
Brain modeling, Numerical models,
EMG/MMG signal classification
BibRef
Boccignone, G.[Giuseppe],
Cuculo, V.[Vittorio],
Grossi, G.[Giuliano],
Lanzarotti, R.[Raffaella],
Migliaccio, R.[Raffaella],
Virtual EMG via Facial Video Analysis,
CIAP17(I:197-207).
Springer DOI
1711
BibRef
Saidane, Y.[Yosra],
Ben Jebara, S.[Sofia],
EMG signal analysis for comprehension of genders differences behavior
during pre-motor activity,
ISIVC16(325-330)
IEEE DOI
1704
Correlation
BibRef
Durandau, G.[Guillaume],
Suleiman, W.[Wael],
Toward a Unified Framework for EMG Signals Processing and Controlling
an Exoskeleton,
CRV14(291-298)
IEEE DOI
1406
electromyography. EMG
Computational modeling
BibRef
Al-Mulla, M.R.,
Sepulveda, F.,
Colley, M.,
Al-Mulla, F.,
Statistical Class Separation Using sEMG Features Towards Automated
Muscle Fatigue Detection and Prediction,
CISP09(1-5).
IEEE DOI
0910
BibRef
Xie, H.B.[Hong-Bo],
Huang, H.[Hai],
Wang, Z.Z.[Zhi-Zhong],
Multiple Feature Domains Information Fusion for Computer-Aided Clinical
Electromyography,
CAIP05(304).
Springer DOI
0509
BibRef
Khushaba, R.N.[Rami N.],
Kodagoda, S.[Sarath],
Electromyogram (EMG) feature reduction using Mutual Components Analysis
for multifunction prosthetic fingers control,
ICARCV12(1534-1539).
IEEE DOI
1304
BibRef
Bokehi, J.R.,
Vasconcellos, N.C.M.,
Conci, A.,
Use of Coherence Measurements between EEG and EMG on Identification of
the Myoclonus Locus,
WSSIP09(1-4).
IEEE DOI
0906
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Multiple Sclerosis Detection and Analysis .