21.9.8.4 Brain, Cortex, EMG, Electromyogram

Chapter Contents (Back)
Brain. Cortex. Electromyogram. EMG.
See also Brain, Cortex, Brain Waves, EEG Analysis, Electroencephalogram.
See also Brain, Parkinson's Disease.

Kakoty, N.M.[Nayan M.], Hazarika, S.M.[Shyamanta M.],
Development of an electromyographic controlled biomimetic prosthetic hand,
IJCVR(4), No. 1-2, 2014, pp. 115-133.
DOI Link 1403
BibRef

Zivanovic, M.,
Time-Varying Multicomponent Signal Modeling for Analysis of Surface EMG Data,
SPLetters(21), No. 6, June 2014, pp. 692-696.
IEEE DOI 1404
Discrete wavelet transforms BibRef

Farina, D., Holobar, A.,
Human-Machine Interfacing by Decoding the Surface Electromyogram,
SPMag(32), No. 1, January 2015, pp. 115-120.
IEEE DOI 1502
Life Sciences. biomedical electrodes BibRef

Farina, D., Holobar, A.,
Characterization of Human Motor Units From Surface EMG Decomposition,
PIEEE(104), No. 2, February 2016, pp. 353-373.
IEEE DOI 1601
Biomedical signal processing BibRef

Arjunan, S.P.[Sridhar Poosapadi], Kumar, D.K.[Dinesh Kant], Wheeler, K.[Katherine], Shimada, H.[Hirokazu],
Spectral properties of surface electromyogram signal and change in muscle conduction velocity during isometric muscle contraction,
SIViP(9), No. 2, February 2015, pp. 261-266.
Springer DOI 1503
BibRef

Lopes, P., Baudisch, P.,
Interactive Systems Based on Electrical Muscle Stimulation,
Computer(50), No. 10, 2017, pp. 28-35.
IEEE DOI 1710
electromyography, interactive systems, muscle, EMS, electrical muscle stimulation, guided training, immersive virtual experiences, information access, interactive systems, mechanical actuation, BibRef

Tsumugiwa, T., Shibata, A., Yokogawa, R.,
Analysis of Upper-Extremity Motion and Muscle and Brain Activation During Machine Operation in Consideration of Mass and Friction,
HMS(48), No. 2, April 2018, pp. 161-171.
IEEE DOI 1804
Brain, Extremities, Force, Friction, Impedance, Muscles, Task analysis, Brain activity, electromyography (EMG), near-infrared spectroscopy (NIRS) BibRef

Hazarika, A.[Anil], Dutta, L.[Lachit], Boro, M.[Meenakshi], Barthakur, M.[Mausumi], Bhuyan, M.[Manabendra],
An automatic feature extraction and fusion model: Application to electromyogram (EMG) signal classification,
MultInfoRetr(8), No. 3, September 2018, pp. 173-186.
Springer DOI 1809
BibRef

Yang, W.[Wei], Yang, D.P.[Da-Peng], Liu, Y.[Yu], Liu, H.[Hong],
Decoding Simultaneous Multi-DOF Wrist Movements From Raw EMG Signals Using a Convolutional Neural Network,
HMS(49), No. 5, October 2019, pp. 411-420.
IEEE DOI 1909
Electromyography, Wrist, Training, Decoding, Feature extraction, Force, Convolutional neural network (CNN), simultaneous control BibRef

Qin, Z., Jiang, Z., Chen, J., Hu, C., Ma, Y.,
sEMG-Based Tremor Severity Evaluation for Parkinson's Disease Using a Light-Weight CNN,
SPLetters(26), No. 4, April 2019, pp. 637-641.
IEEE DOI 1903
Training, Testing, Parkinson's disease, Task analysis, Feature extraction, Hospitals, Muscles, Parkinson's Disease, similarity learning BibRef

Tabatabaei, S.M.[Sayed Mohamad], Chalechale, A.[Abdolah],
Local binary patterns for noise-tolerant sEMG classification,
SIViP(13), No. 3, April 2019, pp. 491-498.
WWW Link. 1904
BibRef

Loconsole, C.[Claudio], Cascarano, G.D.[Giacomo Donato], Brunetti, A.[Antonio], Trotta, G.F.[Gianpaolo Francesco], Losavio, G.[Giacomo], Bevilacqua, V.[Vitoantonio], di Sciascio, E.[Eugenio],
A model-free technique based on computer vision and sEMG for classification in Parkinson's disease by using computer-assisted handwriting analysis,
PRL(121), 2019, pp. 28-36.
Elsevier DOI 1904
Handwriting analysis, Neurodegenerative disease, Parkinson's disease, Neural Network, SVM BibRef

Jose, S.[Shobha], George, S.T.[S. Thomas], Roopchand, P.S.,
DWT-based electromyogram signal classification using maximum likelihood-estimated features for neurodiagnostic applications,
SIViP(14), No. 3, April 2020, pp. 601-608.
WWW Link. 2004
BibRef

Hagengruber, A., Leipscher, U., Eskofier, B.M., Vogel, J.,
Electromyography for Teleoperated Tasks in Weightlessness,
HMS(51), No. 2, April 2021, pp. 130-140.
IEEE DOI 2103
Robots, Task analysis, Muscles, Electromyography, Aerospace electronics, Training, Space missions, weightlessness BibRef

Wang, Z.P.[Zhong-Peng], He, B.B.[Bei-Bei], Zhou, Y.J.[Yi-Jie], Chen, L.[Long], Gu, B.[Bin], Liu, S.[Shuang], Xu, M.[Minpeng], He, F.[Feng], Ming, D.[Dong],
Incorporating EEG and EMG Patterns to Evaluate BCI-Based Long-Term Motor Training,
HMS(52), No. 4, August 2022, pp. 648-657.
IEEE DOI 2208
Electromyography, Electroencephalography, Training, Task analysis, Electrodes, Couplings, Visualization, Brain-computer interface, transfer entropy BibRef

Bao, T.Z.[Tian-Zhe], Zaidi, S.A.R.[Syed Ali Raza], Xie, S.Q.[Sheng Quan], Yang, P.F.[Peng-Fei], Zhang, Z.Q.[Zhi-Qiang],
CNN Confidence Estimation for Rejection-Based Hand Gesture Classification in Myoelectric Control,
HMS(52), No. 1, February 2022, pp. 99-109.
IEEE DOI 2201
Convolutional neural networks, Estimation, Neural networks, Entropy, Linear programming, Task analysis, Optimization, surface electromyography (sEMG) BibRef

Yi, C.Z.[Chun-Zhi], Jiang, F.[Feng], Zhang, S.P.[Sheng-Ping], Guo, H.[Hao], Yang, C.[Chifu], Ding, Z.[Zhen], Wei, B.[Baichun], Lan, X.Y.[Xiang-Yuan], Zhou, H.Y.[Hui-Yu],
Continuous Prediction of Lower-Limb Kinematics From Multi-Modal Biomedical Signals,
CirSysVideo(32), No. 5, May 2022, pp. 2592-2602.
IEEE DOI 2205
Kinematics, Electromyography, Feature extraction, Delays, Prediction algorithms, Exoskeletons, Predictive models, long short-term memory BibRef

Liu, J.B.[Jin-Biao], Tan, G.S.[Gan-Sheng], Wang, J.X.[Ji-Xian], Wei, Y.[Yina], Sheng, Y.X.[Yi-Xuan], Chang, H.[Hui], Xie, Q.[Qing], Liu, H.H.[Hong-Hai],
Closed-Loop Construction and Analysis of Cortico-Muscular-Cortical Functional Network After Stroke,
MedImg(41), No. 6, June 2022, pp. 1575-1586.
IEEE DOI 2206
Muscles, Brain modeling, Frequency-domain analysis, Electroencephalography, Couplings, Electromyography, Hospitals, repetitive transcranial magnetic stimulation BibRef

Zou, Y.X.[Yong-Xiang], Cheng, L.[Long], Han, L.J.[Li-Jun], Li, Z.W.[Zheng-Wei], Song, L.P.[Lu-Ping],
Decoding Electromyographic Signal With Multiple Labels for Hand Gesture Recognition,
SPLetters(30), 2023, pp. 483-487.
IEEE DOI 2305
Feature extraction, Gesture recognition, Decoding, Aggregates, Muscles, Hospitals, Graph neural networks, Electromyogram decoding, multiple labels BibRef

Guo, W.Y.[Wei-Yu], Jiang, N.[Ning], Farina, D.[Dario], Su, J.Y.[Jing-Yong], Wang, Z.[Zheng], Lin, C.[Chuang], Xiong, H.[Hui],
Multi-Attention Feature Fusion Network for Accurate Estimation of Finger Kinematics From Surface Electromyographic Signals,
HMS(53), No. 3, June 2023, pp. 512-519.
IEEE DOI 2306
Convolution, Smoothing methods, Long short term memory, Logic gates, Feature extraction, Kinematics, Estimation, surface EMG BibRef

Omisore, O.M.[Olatunji Mumini], Akinyemi, T.O.[Toluwanimi Oluwadara], Du, W.J.[Wen-Jing], Duan, W.K.[Wen-Ke], Orji, R.[Rita], Do, T.N.[Thanh Nho], Wang, L.[Lei],
Weighting-Based Deep Ensemble Learning for Recognition of Interventionalists' Hand Motions During Robot-Assisted Intravascular Catheterization,
HMS(53), No. 1, February 2023, pp. 215-227.
IEEE DOI 2301
Feature extraction, Catheterization, Motion segmentation, Navigation, Surgery, Robot sensing systems, Manuals, Deep learning, surface electro- myography (sEMG) control BibRef

Wang, Z.F.[Ze-Feng], Yao, J.F.[Jun-Feng], Xu, M.Y.[Mei-Yan], Jiang, M.[Min], Su, J.S.[Jin-Song],
Transformer-based network with temporal depthwise convolutions for sEMG recognition,
PR(145), 2024, pp. 109967.
Elsevier DOI 2311
Surface electromyography, Feature learning, Gesture recognition, Transformer, Self-attention, Temporal depthwise convolution BibRef

Jose, S.[Shobha], Selvaraj, T.G.[Thomas George], Samuel, K.[Kenneth], Philip, J.T.[Jobin T.], Jothiraj, S.N.[Sairamya Nanjappan], Pandian, S.M.S.[Subathra Muthu Swamy], Handiru, V.S.[Vikram Shenoy], Suviseshamuthu, E.S.[Easter S.],
Intramuscular EMG classifier for detecting myopathy and neuropathy,
IJIST(33), No. 2, 2023, pp. 659-669.
DOI Link 2303
center symmetric local binary pattern, classification, electromyography, majority voting, neuromuscular disorders BibRef

Kusuru, D.[Durgesh], Turlapaty, A.C.[Anish C.], Thakur, M.[Mainak],
An Improved Compound Gaussian Model for Bivariate Surface EMG Signals Related to Strength Training,
HMS(55), No. 1, February 2025, pp. 58-70.
IEEE DOI 2502
Muscles, Electromyography, Compounds, Random variables, Adaptation models, Context modeling, Training, Recruitment, Motors, surface electromyography (sEMG) BibRef

Wang, W.H.[Wei-Hao], Liu, Y.[Yan], Song, F.[Fanghao], Lu, J.Y.[Jing-Yu], Qu, J.N.[Jia-Ning], Guo, J.Q.[Jun-Qing], Huang, J.M.[Jin-Ming],
CGMV-EGR: A multimodal fusion framework for electromyographic gesture recognition,
PR(162), 2025, pp. 111387.
Elsevier DOI 2503
Multimodal fusion, Surface electromyography, Gesture recognition, Gated recurrent unit, Vision transformer BibRef


Wang, L., Sun, B., Robinson, J., Jing, T., Fu, Y.,
EV-Action: Electromyography-Vision Multi-Modal Action Dataset,
FG20(160-167)
IEEE DOI 2102
biomechanics, electromyography, feature extraction, image motion analysis, image recognition, EMG BibRef

Fonal, K., Zdunek, R., Wolczowski, A.,
Feature-Fusion HALS-based Algorithm for Linked CP Decomposition Model in Application to Joint EMG/MMG Signal Classification,
ICPR18(928-933)
IEEE DOI 1812
Tensile stress, Feature extraction, Electromyography, Brain modeling, Numerical models, EMG/MMG signal classification BibRef

Boccignone, G.[Giuseppe], Cuculo, V.[Vittorio], Grossi, G.[Giuliano], Lanzarotti, R.[Raffaella], Migliaccio, R.[Raffaella],
Virtual EMG via Facial Video Analysis,
CIAP17(I:197-207).
Springer DOI 1711
BibRef

Saidane, Y.[Yosra], Ben Jebara, S.[Sofia],
EMG signal analysis for comprehension of genders differences behavior during pre-motor activity,
ISIVC16(325-330)
IEEE DOI 1704
Correlation BibRef

Durandau, G.[Guillaume], Suleiman, W.[Wael],
Toward a Unified Framework for EMG Signals Processing and Controlling an Exoskeleton,
CRV14(291-298)
IEEE DOI 1406
electromyography. EMG Computational modeling BibRef

Al-Mulla, M.R., Sepulveda, F., Colley, M., Al-Mulla, F.,
Statistical Class Separation Using sEMG Features Towards Automated Muscle Fatigue Detection and Prediction,
CISP09(1-5).
IEEE DOI 0910
BibRef

Xie, H.B.[Hong-Bo], Huang, H.[Hai], Wang, Z.Z.[Zhi-Zhong],
Multiple Feature Domains Information Fusion for Computer-Aided Clinical Electromyography,
CAIP05(304).
Springer DOI 0509
BibRef

Khushaba, R.N.[Rami N.], Kodagoda, S.[Sarath],
Electromyogram (EMG) feature reduction using Mutual Components Analysis for multifunction prosthetic fingers control,
ICARCV12(1534-1539).
IEEE DOI 1304
BibRef

Bokehi, J.R., Vasconcellos, N.C.M., Conci, A.,
Use of Coherence Measurements between EEG and EMG on Identification of the Myoclonus Locus,
WSSIP09(1-4).
IEEE DOI 0906
BibRef

Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Multiple Sclerosis Detection and Analysis .


Last update:Apr 23, 2025 at 18:43:10