Landeweerd, G.H.,
Gelsema, E.S.,
Bins, M.,
Halie, M.R.,
Interactive pattern recognition of blood cells in malignant lymphomas,
PR(14), No. 1-6, 1981, pp. 239-244.
Elsevier DOI
0309
BibRef
Olson, G.B.[George B.],
Bartels, P.H.[Peter H.],
Computer discrimination of splenocytes and peripheral blood lymphocytes
from mice infected with friend murine leukemia virus,
PR(13), No. 1, 1981, pp. 57-64.
Elsevier DOI
0309
BibRef
Aus, H.M.,
Harms, H.,
Haucke, M.,
Beritova, J.,
ter Meulen, V.,
Gunzer, U.,
Baumann, I.,
Abmayr, W.,
Statistical Evaluation of Computer Markers to Detect Leukemias,
PRL(4), 1986, pp. 231-241.
BibRef
8600
Firestone, L.M.,
Preston, K.,
Nathwani, B.N.,
Continuous Class Pattern-Recognition for Pathology, with Applications to
Non-Hodgkins Follicular Lymphomas,
PR(29), No. 12, December 1996, pp. 2061-2078.
Elsevier DOI
9701
BibRef
Yeh, J.R.,
Lin, C.W.,
Shieh, J.S.,
An Approach of Multiscale Complexity in Texture Analysis of Lymphomas,
SPLetters(18), No. 4, April 2011, pp. 239-242.
IEEE DOI
1103
BibRef
Dimitropoulos, K.[Kosmas],
Michail, E.[Emmanouil],
Koletsa, T.[Triantafyllia],
Kostopoulos, I.[Ioannis],
Grammalidis, N.[Nikos],
Using adaptive neuro-fuzzy inference systems for the detection of
centroblasts in microscopic images of follicular lymphoma,
SIViP(8), No. S1, December 2014, pp. 33-40.
Springer DOI
1411
BibRef
Bozkurt, A.[Alican],
Suhre, A.[Alexander],
Cetin, A.E.[A. Enis],
Multi-scale directional-filtering-based method for follicular lymphoma
grading,
SIViP(8), No. S1, December 2014, pp. 63-70.
WWW Link.
1411
BibRef
And:
Erratum:
SIViP(8), No. S1, December 2014, pp. 71.
WWW Link.
1411
BibRef
Dimitropoulos, K.[Kosmas],
Barmpoutis, P.[Panagiotis],
Kostopoulos, I.[Ioannis],
Grammalidis, N.[Nikos],
Automated detection and classification of nuclei in PAX5 and
H&E-stained tissue sections of follicular lymphoma,
SIViP(11), No. 1, January 2017, pp. 145-153.
WWW Link.
1702
BibRef
Al-jaboriy, S.S.[Saif S.],
Sjarif, N.N.A.[Nilam Nur Amir],
Chuprat, S.[Suriayati],
Abduallah, W.M.[Wafaa Mustafa],
Acute lymphoblastic leukemia segmentation using local pixel
information,
PRL(125), 2019, pp. 85-90.
Elsevier DOI
1909
Acute lymphoblastic leukemia, Machine learning technique,
Segmentation, 4-moment statistical features,
Microscopy images
BibRef
Roy, R.M.[Reena M.],
Ameer, P.M.,
Identification of white blood cells for the diagnosis of acute
myeloid leukemia,
IJIST(32), No. 4, 2022, pp. 1307-1317.
DOI Link
2207
acute myeloid leukemia, classification, ensemble learning,
leukocyte, transfer learning
BibRef
Baby, D.[Diana],
Juliet, S.[Sujitha],
Raj, M.M.A.[M. M. Anishin],
An efficient lymphocytic leukemia detection based on EfficientNets
and ensemble voting classifier,
IJIST(33), No. 1, 2023, pp. 419-426.
DOI Link
2301
classification, EfficientNet, leukemia detection,
transfer learning, voting classifier
BibRef
Gao, Z.[Zeyu],
Mao, A.[Anyu],
Wu, K.[Kefei],
Li, Y.[Yang],
Zhao, L.[Liebin],
Zhang, X.L.[Xian-Li],
Wu, J.[Jialun],
Yu, L.[Lisha],
Xing, C.[Chao],
Gong, T.[Tieliang],
Zheng, Y.F.[Ye-Feng],
Meng, D.Y.[De-Yu],
Zhou, M.[Min],
Li, C.[Chen],
Childhood Leukemia Classification via Information Bottleneck Enhanced
Hierarchical Multi-Instance Learning,
MedImg(42), No. 8, August 2023, pp. 2348-2359.
IEEE DOI
2308
Annotations, Pediatrics, Feature extraction, Hospitals,
Task analysis, Costs, Correlation, Acute leukemia,
hierarchical classification
BibRef
Salvi, M.[Massimo],
Michielli, N.[Nicola],
Meiburger, K.M.[Kristen M.],
Cattelino, C.[Cristina],
Cotrufo, B.[Bruna],
Giacosa, M.[Matteo],
Giovanzana, C.[Chiara],
Molinari, F.[Filippo],
cyto-Knet: An instance segmentation approach for multiple myeloma
plasma cells using conditional kernels,
IJIST(34), No. 1, 2024, pp. e22984.
DOI Link
2401
cytology, deep learning, Giemsa stain, instance segmentation,
myeloma plasma cells
BibRef
Mohan, A.[Abdullah],
Beshir, K.[Kedir],
Kebede, A.[Alemayehu],
Acute myelogenous leukaemia detection in blood microscope images using
particle swarm optimisation,
IJCVR(14), No. 3, 2024, pp. 250-263.
DOI Link
2405
BibRef
Bai, G.M.[G. Mercy],
Venkadesh, P.,
Optimized Deep Neuro-Fuzzy Network with MapReduce Architecture for
Acute Lymphoblastic Leukemia Classification and Severity Analysis,
IJIG(24), No. 3, May 2024, pp. 2450028.
DOI Link
2406
BibRef
Attallah, O.[Omneya],
Acute lymphocytic leukemia detection and subtype classification via
extended wavelet pooling based-CNNs and statistical-texture features,
IVC(147), 2024, pp. 105064.
Elsevier DOI
2406
Acute lymphocytic leukemia (ALL), Feature fusion,
Gray level cooccurrence matrix (GLCM), ReleifF feature selection (FS)
BibRef
Genovese, A.[Angelo],
Piuri, V.[Vincenzo],
Scotti, F.[Fabio],
A decision support system for acute lymphoblastic leukemia detection
based on explainable artificial intelligence,
IVC(151), 2024, pp. 105298.
Elsevier DOI
2411
Acute lymphoblastic leukemia (ALL),
Explainable artificial intelligence (XAI),
Convolutional neural network (CNN)
BibRef
Dhalla, S.[Sabrina],
Mittal, A.[Ajay],
Gupta, S.[Savita],
Singh, H.[Harleen],
Multi-model Ensemble to Classify Acute Lymphoblastic Leukemia in Blood
Smear Images,
AIHA20(243-253).
Springer DOI
2103
BibRef
Nava, R.,
González, G.,
Kybic, J.,
Escalante-Ramírez, B.,
Characterization of hematologic malignancies based on discrete
orthogonal moments,
IPTA16(1-6)
IEEE DOI
1703
blood
BibRef
Martinez-Martinez, F.,
Kybic, J.,
Lambert, L.,
Automatic detection of bone marrow infiltration by multiple myeloma
detection in low-dose CT,
ICIP15(4813-4817)
IEEE DOI
1512
Myeloma; automatic; detection; infiltration; scalloping
BibRef
Sarrafzadeh, O.[Omid],
Rabbani, H.[Hossein],
Dehnavi, A.M.[Alireza Mehri],
Talebi, A.[Ardeshir],
Detecting different sub-types of acute myelogenous leukemia using
dictionary learning and sparse representation,
ICIP15(3339-3343)
IEEE DOI
1512
Bone Marrow Microscopic Image
BibRef
di Ruberto, C.[Cecilia],
Fodde, G.[Giuseppe],
Putzu, L.[Lorenzo],
On Different Colour Spaces for Medical Colour Image Classification,
CAIP15(I:477-488).
Springer DOI
1511
BibRef
Earlier:
Comparison of Statistical Features for Medical Colour Image
Classification,
CVS15(3-13).
Springer DOI
1507
BibRef
Earlier: A1, A3, Only:
Investigation of Different Classification Models to Determine the
Presence of Leukemia in Peripheral Blood Image,
CIAP13(I:612-621).
Springer DOI
1311
BibRef
Vincent, I.,
Kwon, K.R.[Ki-Ryong],
Lee, S.H.[Suk-Hwan],
Moon, K.S.[Kwang-Seok],
Acute lymphoid leukemia classification using two-step neural network
classifier,
FCV15(1-4)
IEEE DOI
1506
cancer
BibRef
Desbordes, P.,
Petitjean, C.,
Ruan, S.[Su],
3D automated lymphoma segmentation in PET images based on cellular
automata,
IPTA14(1-6)
IEEE DOI
1503
cellular automata
BibRef
Labati, R.D.[Ruggero Donida],
Piuri, V.[Vincenzo],
Scotti, F.[Fabio],
All-IDB: The acute lymphoblastic leukemia image database for image
processing,
ICIP11(2045-2048).
IEEE DOI
1201
BibRef
Wang, J.Y.[Ji-Yong],
Xia, Y.[Yong],
Wang, J.[Jiabin],
Feng, D.D.,
Variational Bayes Inference Based Segmentation of Heterogeneous
Lymphoma Volumes in Dual-Modality PET-CT Images,
DICTA11(274-278).
IEEE DOI
1205
BibRef
Sertel, O.[Olcay],
Catalyurek, U.V.[Umit V.],
Lozanski, G.[Gerard],
Shanaah, A.[Arwa],
Gurcan, M.N.[Metin N.],
An Image Analysis Approach for Detecting Malignant Cells in Digitized
H&E-stained Histology Images of Follicular Lymphoma,
ICPR10(273-276).
IEEE DOI
1008
BibRef
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Malaria Detection, Analysis .