7.1.7.14 Long-Tailed Object Detection

Chapter Contents (Back)
Object Detection. Long-Tailed Data. 2507

See also Unbalanced Datasets, Imbalanced Sample Sizes, Imbalanced Data, Long-Tailed Data.

Fernández-Baldera, A.[Antonio], Buenaposada, J.M.[José M.], Baumela, L.[Luis],
BAdaCost: Multi-class Boosting with Costs,
PR(79), 2018, pp. 467-479.
Elsevier DOI 1804
BibRef
Earlier:
Multi-class Boosting for Imbalanced Data,
IbPRIA15(57-64).
Springer DOI 1506
Boosting, Multi-class classification, Cost-sensitive classification, Multi-view object detection BibRef

Chen, J.[Joya], Liu, D.[Dong], Luo, B.[Bin], Peng, X.Z.[Xue-Zheng], Xu, T.[Tong], Chen, E.[Enhong],
Residual objectness for imbalance reduction,
PR(130), 2022, pp. 108781.
Elsevier DOI 2206
Object detection, Class imbalance, Residual objectness BibRef

Islam, M.T.[Md Touhid], Islam, M.R.[Md Rashedul], Uddin, M.P.[Md Palash], Ulhaq, A.[Anwaar],
A Deep Learning-Based Hyperspectral Object Classification Approach via Imbalanced Training Samples Handling,
RS(15), No. 14, 2023, pp. 3532.
DOI Link 2307
BibRef

Gong, H.Y.[Hui-Yun], Li, Y.G.[Ye-Guang], Dong, J.[Jian],
A dual-balanced network for long-tail distribution object detection,
IET-CV(17), No. 5, 2023, pp. 565-575.
DOI Link 2309
learning (artificial intelligence), object detection BibRef

Tan, J.R.[Jing-Ru], Li, B.[Bo], Lu, X.[Xin], Yao, Y.Q.[Yong-Qiang], Yu, F.W.[Feng-Wei], He, T.[Tong], Ouyang, W.L.[Wan-Li],
The Equalization Losses: Gradient-Driven Training for Long-tailed Object Recognition,
PAMI(45), No. 11, November 2023, pp. 13876-13892.
IEEE DOI 2310
BibRef

Yang, J.X.[Jia-Xin], Yu, M.M.[Miao-Miao], Li, S.[Shuohao], Zhang, J.[Jun], Hu, S.Z.[Sheng-Ze],
Long-Tailed Object Detection for Multimodal Remote Sensing Images,
RS(15), No. 18, 2023, pp. 4539.
DOI Link 2310
BibRef

Shao, M.W.[Ming-Wen], Peng, Z.[Zilu],
Distance metric-based learning for long-tail object detection,
IVC(142), 2024, pp. 104888.
Elsevier DOI 2402
Deep convolutional neural network, Object detection, Long-tail distribution, Metric learning, Feature extraction BibRef

Qi, T.H.[Tian-Hao], Xie, H.T.[Hong-Tao], Li, P.[Pandeng], Ge, J.N.[Jian-Nan], Zhang, Y.D.[Yong-Dong],
Balanced Classification: A Unified Framework for Long-Tailed Object Detection,
MultMed(26), 2024, pp. 3088-3101.
IEEE DOI 2402
Tail, Detectors, Training, Object detection, Feature extraction, Head, Task analysis, Long-tailed object detection, Feature hallucination module BibRef

Zhao, L.[Liang], Teng, Y.[Yao], Wang, L.M.[Li-Min],
Logit Normalization for Long-Tail Object Detection,
IJCV(132), No. 6, June 2024, pp. 2114-2134.
Springer DOI 2406
BibRef

Teng, Y.[Yao], Liu, H.S.[Hai-Song], Guo, S.[Sheng], Wang, L.M.[Li-Min],
StageInteractor: Query-based Object Detector with Cross-stage Interaction,
ICCV23(6554-6565)
IEEE DOI Code:
WWW Link. 2401
BibRef

Pan, C.[Cong], Peng, J.[Junran], Bu, X.Y.[Xing-Yuan], Zhang, Z.X.[Zhao-Xiang],
Large-Scale Object Detection in the Wild With Imbalanced Data Distribution, and Multi-Labels,
PAMI(46), No. 12, December 2024, pp. 9255-9271.
IEEE DOI 2411
Object detection, Annotations, Training, Detectors, Deep learning, Toy manufacturing industry, Automobiles, object detection, multi-labels BibRef

Peng, J.[Junran], Bu, X.Y.[Xing-Yuan], Sun, M., Zhang, Z.X.[Zhao-Xiang], Tan, T., Yan, J.,
Large-Scale Object Detection in the Wild From Imbalanced Multi-Labels,
CVPR20(9706-9715)
IEEE DOI 2008
Object detection, Training, Machine learning, Automobiles, Toy manufacturing industry, Sampling methods, Detectors BibRef


Zhu, K.[Ke], Fu, M.H.[Ming-Hao], Shao, J.[Jie], Liu, T.Y.[Tian-Yu], Wu, J.X.[Jian-Xin],
Rectify the Regression Bias in Long-tailed Object Detection,
ECCV24(XXVIII: 198-214).
Springer DOI 2412
BibRef

Dong, N.[Na], Zhang, Y.Q.[Yong-Qiang], Ding, M.L.[Ming-Li], Lee, G.H.[Gim Hee],
Boosting Long-tailed Object Detection via Step-wise Learning on Smooth-tail Data,
ICCV23(6917-6926)
IEEE DOI Code:
WWW Link. 2401
BibRef

Zhang, S.[Shaoyu], Chen, C.[Chen], Peng, S.[Silong],
Reconciling Object-Level and Global-Level Objectives for Long-Tail Detection,
ICCV23(18936-18946)
IEEE DOI Code:
WWW Link. 2401
BibRef

Xu, W.C.[Wei-Chen], Cao, J.[Jian], Fu, T.H.[Tian-Hao], Yao, H.Y.[Hong-Yi], Wang, Y.[Yuan],
Boosting Dense Long-tailed Object Detection from Data-centric View,
ACCV22(III:558-574).
Springer DOI 2307
BibRef

Wang, T.[Tong], Zhu, Y.[Yousong], Chen, Y.Y.[Ying-Ying], Zhao, C.Y.[Chao-Yang], Yu, B.[Bin], Wang, J.Q.[Jin-Qiao], Tang, M.[Ming],
C2AM Loss: Chasing a Better Decision Boundary for Long-Tail Object Detection,
CVPR22(6970-6979)
IEEE DOI 2210
Adaptation models, Sensitivity, Object detection, Detectors, Tail, Transfer/low-shot/long-tail learning, retrieval BibRef

Choi, J.W.[Jong-Won], Yi, K.M.[Kwang Moo], Kim, J.[Jihoon], Choo, J.H.[Jin-Ho], Kim, B.J.[Byoung-Jip], Chang, J.[Jinyeop], Gwon, Y.J.[Young-June], Chang, H.J.[Hyung Jin],
VaB-AL: Incorporating Class Imbalance and Difficulty with Variational Bayes for Active Learning,
CVPR21(6745-6754)
IEEE DOI 2111
Training, Learning systems, Estimation, Object detection, Task analysis BibRef

Yu, W.P.[Wei-Ping], Yang, T.[Taojiannan], Chen, C.[Chen],
Towards Resolving the Challenge of Long-tail Distribution in UAV Images for Object Detection,
WACV21(3257-3266)
IEEE DOI 2106
Head, Image resolution, Computational modeling, Object detection, Detectors BibRef

Wang, T.[Tong], Zhu, Y.S.[You-Song], Zhao, C.Y.[Chao-Yang], Zeng, W.[Wei], Wang, J.Q.[Jin-Qiao], Tang, M.[Ming],
Adaptive Class Suppression Loss for Long-Tail Object Detection,
CVPR21(3102-3111)
IEEE DOI 2111
Training, Adaptation models, Vocabulary, Head, Object detection, Manuals BibRef

Zhang, S.Y.[Song-Yang], Li, Z.[Zeming], Yan, S.P.[Shi-Peng], He, X.M.[Xu-Ming], Sun, J.[Jian],
Distribution Alignment: A Unified Framework for Long-tail Visual Recognition,
CVPR21(2361-2370)
IEEE DOI 2111
Deep learning, Visualization, Image segmentation, Semantics, Object detection BibRef

Zhang, C.[Cheng], Pan, T.Y.[Tai-Yu], Li, Y.D.[Yan-Dong], Hu, H.X.[He-Xiang], Xuan, D.[Dong], Changpinyo, S.[Soravit], Gong, B.Q.[Bo-Qing], Chao, W.L.[Wei-Lun],
MosaicOS: A Simple and Effective Use of Object-Centric Images for Long-Tailed Object Detection,
ICCV21(407-417)
IEEE DOI 2203
Training, Image segmentation, Computational modeling, Object detection, Detectors, Recognition and classification, Transfer/Low-shot/Semi/Unsupervised Learning BibRef

Li, Y., Wang, T., Kang, B., Tang, S., Wang, C., Li, J., Feng, J.,
Overcoming Classifier Imbalance for Long-Tail Object Detection With Balanced Group Softmax,
CVPR20(10988-10997)
IEEE DOI 2008
Training, Object detection, Proposals, Adaptation models, Feature extraction, Computational modeling, Detectors BibRef

Tan, J., Wang, C., Li, B., Li, Q., Ouyang, W., Yin, C., Yan, J.,
Equalization Loss for Long-Tailed Object Recognition,
CVPR20(11659-11668)
IEEE DOI 2008
Training, Task analysis, Proposals, Detectors, Object recognition, Object detection BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Dense Object Detection .


Last update:Sep 10, 2025 at 12:00:25