7.1.7.15 Dense Object Detection

Chapter Contents (Back)
Object Detection. Dense Objects.
See also Counting Instances, Counting Objects.

Goldman, E.[Eran], Goldberger, J.[Jacob],
CRF with deep class embedding for large scale classification,
CVIU(191), 2020, pp. 102865.
Elsevier DOI 2002
CRF, Class embedding, Matrix factorization, Surrogate likelihood, Batch normalization BibRef

Goldman, E.[Eran], Herzig, R.[Roei], Eisenschtat, A.[Aviv], Goldberger, J.[Jacob], Hassner, T.[Tal],
Precise Detection in Densely Packed Scenes,
CVPR19(5222-5231).
IEEE DOI 2002
E.g. man-made scenes with numerous identical objects. BibRef

Zhou, L.M.[Lin-Mao], Chang, H.[Hong], Ma, B.P.[Bing-Peng], Shan, S.G.[Shi-Guang],
Interactive Regression and Classification for Dense Object Detector,
IP(31), 2022, pp. 3684-3696.
IEEE DOI 2206
Location awareness, Detectors, Feature extraction, Object detection, Standards, Backpropagation, Pipelines, interactive BibRef

Yang, R.P.[Rui-Ping], Yu, J.[Jiguo], Yin, J.[Jian], Liu, K.[Kun], Xu, S.H.[Shao-Hua],
A dense R-CNN multi-target instance segmentation model and its application in medical image processing,
IET-IPR(16), No. 9, 2022, pp. 2495-2505.
DOI Link 2206
BibRef

Li, X.[Xiang], Lv, C.Q.[Cheng-Qi], Wang, W.H.[Wen-Hai], Li, G.[Gang], Yang, L.F.[Ling-Feng], Yang, J.[Jian],
Generalized Focal Loss: Towards Efficient Representation Learning for Dense Object Detection,
PAMI(45), No. 3, March 2023, pp. 3139-3153.
IEEE DOI 2302
Location awareness, Detectors, Estimation, Training, Predictive models, Feature extraction, Object detection, deep learning BibRef

Li, X.[Xiang], Wang, W.H.[Wen-Hai], Hu, X.L.[Xiao-Lin], Li, J.[Jun], Tang, J.H.[Jin-Hui], Yang, J.[Jian],
Generalized Focal Loss V2: Learning Reliable Localization Quality Estimation for Dense Object Detection,
CVPR21(11627-11636)
IEEE DOI 2111
Location awareness, Training, Uncertainty, Correlation, Estimation, Object detection BibRef

Wang, S.Y.[Sheng-Ye], Qu, Z.[Zhong], Li, C.J.[Cui-Jin],
A Dense-Aware Cross-splitNet for Object Detection and Recognition,
CirSysVideo(33), No. 5, May 2023, pp. 2290-2301.
IEEE DOI 2305
Object detection, Feature extraction, Detectors, Task analysis, Image recognition, Head, Convolution, Object detection, cross-splitNet BibRef

Chu, K.C.[Kuan-Chao], Nakayama, H.[Hideki],
Two-Path Object Knowledge Injection for Detecting Novel Objects with Single-Stage Dense Detector,
IEICE(E106-D), No. 11, November 2023, pp. 1868-1880.
WWW Link. 2311
BibRef

Song, Y.Y.[Yao-Ye], Zhang, P.[Peng], Huang, W.[Wei], Zha, Y.F.[Yu-Fei], You, T.[Tao], Zhang, Y.N.[Yan-Ning],
Closed-loop unified knowledge distillation for dense object detection,
PR(149), 2024, pp. 110235.
Elsevier DOI 2403
Triple parallel distillation, Hierarchical re-weighting attention distillation, Closed-loop unified BibRef

Liu, C.[Chang], Li, X.M.[Xiao-Mao], Xiao, W.P.[Wei-Ping], Xie, S.R.[Shao-Rong],
CCDet: Confidence-Consistent Learning for Dense Object Detection,
IP(33), 2024, pp. 2746-2758.
IEEE DOI 2404
Location awareness, Task analysis, Estimation, Detectors, Feature extraction, label assignment BibRef

Ma, J.W.[Jia-Wei], Liang, M.[Min], Chen, L.[Lei], Tian, S.[Shu], Chen, S.L.[Song-Lu], Qin, J.Y.[Jing-Yan], Yin, X.C.[Xu-Cheng],
Sample Weighting with Hierarchical Equalization Loss for Dense Object Detection,
MultMed(26), 2024, pp. 5846-5859.
IEEE DOI 2404
Detectors, Task analysis, Object detection, Training, Location awareness, Feature extraction, Modulation, weighted loss BibRef

Lu, Y.X.[Yu-Xiang], Sirejiding, S.[Shalayiding], Ding, Y.[Yue], Wang, C.L.[Chun-Lin], Lu, H.T.[Hong-Tao],
Prompt Guided Transformer for Multi-Task Dense Prediction,
MultMed(26), 2024, pp. 6375-6385.
IEEE DOI 2404
Task analysis, Transformers, Decoding, Multitasking, Adaptation models, Feature extraction, Tuning, Multi-task learning, vision transformer BibRef

Wu, H.X.[Hui-Xin], Zhu, Y.[Yang], Cao, M.[Mengdi],
An algorithm for detecting dense small objects in aerial photography based on coordinate position attention module,
IET-IPR(18), No. 7, 2024, pp. 1759-1767.
DOI Link 2405
convolutional neural nets, image processing BibRef

Wang, L.F.[Lin-Fei], Zhan, Y.B.[Yi-Bing], Lan, L.[Long], Lin, X.[Xu], Tao, D.P.[Da-Peng], Gao, X.B.[Xin-Bo],
DeIoU: Toward Distinguishable Box Prediction in Densely Packed Object Detection,
CirSysVideo(34), No. 11, November 2024, pp. 11086-11100.
IEEE DOI 2412
Object detection, Predictive models, Detectors, Interference, Training, Feature extraction, Shape, Dense object detection, intersection over union BibRef

Zhang, L.[Li], Lu, J.C.[Jia-Chen], Zheng, S.X.[Si-Xiao], Zhao, X.X.[Xin-Xuan], Zhu, X.T.[Xia-Tian], Fu, Y.W.[Yan-Wei], Xiang, T.[Tao], Feng, J.F.[Jian-Feng], Torr, P.H.S.[Philip H. S.],
Vision Transformers: From Semantic Segmentation to Dense Prediction,
IJCV(132), No. 12, December 2024, pp. 6142-6162.
Springer DOI 2501
BibRef

Li, C.L.[Cheng-Long], Zhang, J.W.[Jian-Wei], Huo, B.[Bihan], Xue, Y.J.[Ying-Jian],
DHQ-DETR: Distributed and High-Quality Object Query for Enhanced Dense Detection in Remote Sensing,
RS(17), No. 3, 2025, pp. 514.
DOI Link 2502
BibRef

Ran, J.F.[Jiang-Fan], Yan, H.B.[Hai-Bin],
Interactive shape estimation for densely cluttered objects,
PRL(191), 2025, pp. 8-14.
Elsevier DOI 2504
Shape estimation, Active exploration, Intelligent robot, Deep learning BibRef

Song, Y.Y.[Yao-Ye], Zhang, P.[Peng], Huang, W.[Wei], Zha, Y.F.[Yu-Fei], Zhang, Y.N.[Yan-Ning],
Flexible Temperature Parallel Distillation for Dense Object Detection: Make Response-Based Knowledge Distillation Great Again,
CirSysVideo(35), No. 5, May 2025, pp. 4963-4975.
IEEE DOI 2505
Location awareness, Object detection, Training, Feature extraction, Detectors, Semantics, flexible temperature BibRef

Dong, C.J.[Chao-Jun], Wang, C.X.[Cheng-Xuan], Zhai, Y.[Yikui], Li, Y.[Ye], Zhou, J.H.[Jian-Hong], Coscia, P.[Pasquale], Genovese, A.[Angelo], Piuri, V.[Vincenzo], Scotti, F.[Fabio],
GMTNet: Dense Object Detection via Global Dynamically Matching Transformer Network,
CirSysVideo(35), No. 5, May 2025, pp. 4923-4936.
IEEE DOI Code:
WWW Link. 2505
Training, Transformers, Shape, Detectors, Adaptation models, Accuracy, Feature extraction, Visualization, Noise, Head, Mobile window system, industrial scenarios BibRef

Zhang, G.[Gang], Li, Z.[Ziyi], Tang, C.F.[Chu-Feng], Li, J.M.[Jian-Min], Hu, X.L.[Xiao-Lin],
CEDNet: A cascade encoder-decoder network for dense prediction,
PR(158), 2025, pp. 111072.
Elsevier DOI Code:
WWW Link. 2411
Dense prediction, Object detection, Instance segmentation, Semantic segmentation, Cascade encoder-decoder, Multi-scale feature fusion BibRef

n Dong, J.P.[Jin-Peng], Yao, D.[Dingyi], Hu, Y.F.[Yu-Feng], Zhou, S.P.[San-Ping], Zheng, N.N.[Nan-Ning],
A Novel Dense Object Detector With Scale Balanced Sample Assignment and Refinement,
CirSysVideo(35), No. 9, September 2025, pp. 9337-9350.
IEEE DOI 2509
Detectors, Location awareness, Object detection, Training, Accuracy, Transformers, Measurement, Visualization, Semantics, Multitasking, refinement BibRef

Li, X.M.[Xi-Ming], Di, X.G.[Xiao-Guang], Liu, M.[Maozhen], Ye, S.X.[Shao-Xun],
Feature-aligned distillation for dense object detection via refined semantic guidance and distribution consistency,
CVIU(262), 2025, pp. 104519.
Elsevier DOI 2512
Knowledge Distillation, Object detection, Feature alignment, Refined semantic guidance, Distribution consistency BibRef


Chen, L.W.[Lin-Wei], Gu, L.[Lin], Li, L.[Liang], Yan, C.G.[Cheng-Gang], Fu, Y.[Ying],
Frequency Dynamic Convolution for Dense Image Prediction,
CVPR25(30178-30188)
IEEE DOI Code:
WWW Link. 2508
Frequency modulation, Costs, Convolution, Frequency-domain analysis, Object detection, image classification BibRef

Wang, J.J.[Jun-Jie], Chen, B.[Bin], Li, Y.L.[Yu-Lin], Kang, B.[Bin], Chen, Y.[Yichi], Tian, Z.[Zhuotao],
DeCLIP: Decoupled Learning for Open-Vocabulary Dense Perception,
CVPR25(14824-14834)
IEEE DOI Code:
WWW Link. 2508
Visualization, Limiting, Correlation, Foundation models, Semantic segmentation, Crops, Object detection, Predictive models, dense prediction tasks BibRef

Xia, C.[Chunlong], Wang, X.L.[Xin-Liang], Lv, F.[Feng], Hao, X.[Xin], Shi, Y.F.[Yi-Feng],
ViT-CoMer: Vision Transformer with Convolutional Multi-scale Feature Interaction for Dense Predictions,
CVPR24(5493-5502)
IEEE DOI Code:
WWW Link. 2410
Convolutional codes, Semantic segmentation, Semantics, Training data, Object detection, DensePrediction BibRef

Zu, S.C.[Shi-Cheng], Jin, Y.C.[Yu-Cheng],
Rank and Sort Loss-Aware Label Assignment with Centroid Prior for Dense Object Detection,
FG24(1-9)
IEEE DOI 2408
Location awareness, Training, Costs, Shape, Semantics, Object detection, Gesture recognition BibRef

Zhang, S.L.[Shi-Long], Wang, X.J.[Xin-Jiang], Wang, J.Q.[Jia-Qi], Pang, J.M.[Jiang-Miao], Lyu, C.Q.[Cheng-Qi], Zhang, W.W.[Wen-Wei], Luo, P.[Ping], Chen, K.[Kai],
Dense Distinct Query for End-to-End Object Detection,
CVPR23(7329-7338)
IEEE DOI 2309
BibRef

Li, S.[Shuai], Li, M.H.[Ming-Han], Li, R.H.[Rui-Huang], He, C.H.[Chen-Hang], Zhang, L.[Lei],
One-to-Few Label Assignment for End-to-End Dense Detection,
CVPR23(7350-7359)
IEEE DOI 2309
BibRef

Stegmüller, T.[Thomas], Lebailly, T.[Tim], Bozorgtabar, B.[Behzad], Tuytelaars, T.[Tinne], Thiran, J.P.[Jean-Philippe],
CrOC: Cross-View Online Clustering for Dense Visual Representation Learning,
CVPR23(7000-7009)
IEEE DOI 2309
BibRef

Borse, S.[Shubhankar], Das, D.[Debasmit], Park, H.[Hyojin], Cai, H.[Hong], Garrepalli, R.[Risheek], Porikli, F.M.[Fatih M.],
DejaVu: Conditional Regenerative Learning to Enhance Dense Prediction,
CVPR23(19466-19477)
IEEE DOI 2309
BibRef

Yin, D.S.[Dong-Shuo], Yang, Y.R.[Yi-Ran], Wang, Z.C.[Zhe-Chao], Yu, H.F.[Hong-Feng], Wei, K.W.[Kai-Wen], Sun, X.[Xian],
1% VS 100%: Parameter-Efficient Low Rank Adapter for Dense Predictions,
CVPR23(20116-20126)
IEEE DOI 2309
BibRef

Yang, C.Y.[Chenhong-Yi], Ochal, M.[Mateusz], Storkey, A.[Amos], Crowley, E.J.[Elliot J.],
Prediction-Guided Distillation for Dense Object Detection,
ECCV22(IX:123-138).
Springer DOI 2211
BibRef

Xu, D.L.[Dong-Li], Deng, J.H.[Jin-Hong], Li, W.[Wen],
Revisiting AP Loss for Dense Object Detection: Adaptive Ranking Pair Selection,
CVPR22(14167-14176)
IEEE DOI 2210
Location awareness, Codes, Focusing, Clustering algorithms, Object detection, Detectors, Recognition: detection, Vision applications and systems BibRef

Zheng, Z.H.[Zhao-Hui], Ye, R.G.[Rong-Guang], Wang, P.[Ping], Ren, D.W.[Dong-Wei], Zuo, W.M.[Wang-Meng], Hou, Q.[Qibin], Cheng, M.M.[Ming-Ming],
Localization Distillation for Dense Object Detection,
CVPR22(9397-9406)
IEEE DOI 2210
Location awareness, Training, Schedules, Semantics, Object detection, Detectors, Recognition: detection, categorization, retrieval BibRef

Shu, C.Y.[Chang-Yong], Liu, Y.F.[Yi-Fan], Gao, J.F.[Jian-Fei], Yan, Z.[Zheng], Shen, C.H.[Chun-Hua],
Channel-wise Knowledge Distillation for Dense Prediction*,
ICCV21(5291-5300)
IEEE DOI 2203
Training, Semantics, Estimation, Object detection, Detectors, Predictive models, Efficient training and inference methods, grouping and shape BibRef

Deng, Z.L.[Zhao-Li], Yang, C.[Chenhui],
Multiple-step Sampling for Dense Object Detection and Counting,
ICPR21(1036-1042)
IEEE DOI 2105
Training, Detectors, Object detection, Benchmark testing, Sampling methods, Feature extraction, object counting BibRef

Hu, H.Z.[Han-Zhe], Bai, S.[Shuai], Li, A.[Aoxue], Cui, J.S.[Jin-Shi], Wang, L.W.[Li-Wei],
Dense Relation Distillation with Context-aware Aggregation for Few-Shot Object Detection,
CVPR21(10180-10189)
IEEE DOI 2111
Training, Deep learning, Adaptation models, Codes, Annotations, Object detection BibRef

Gao, Z.T.[Zi-Teng], Wang, L.M.[Li-Min], Wu, G.S.[Gang-Shan],
Mutual Supervision for Dense Object Detection,
ICCV21(3621-3630)
IEEE DOI 2203
Training, Location awareness, Pipelines, Detectors, Object detection, Benchmark testing, Detection and localization in 2D and 3D, BibRef

Li, B.[Bo], Yao, Y.Q.[Yong-Qiang], Tan, J.R.[Jing-Ru], Zhang, G.[Gang], Yu, F.W.[Feng-Wei], Lu, J.W.[Jian-Wei], Luo, Y.[Ye],
Equalized Focal Loss for Dense Long-Tailed Object Detection,
CVPR22(6980-6989)
IEEE DOI 2210
Training, Industries, Deep learning, Pipelines, Detectors, Object detection, Transfer/low-shot/long-tail learning, retrieval BibRef

Tan, J.R.[Jing-Ru], Lu, X.[Xin], Zhang, G.[Gang], Yin, C.Q.[Chang-Qing], Li, Q.Q.[Quan-Quan],
Equalization Loss v2: A New Gradient Balance Approach for Long-tailed Object Detection,
CVPR21(1685-1694)
IEEE DOI 2111
Training, Codes, Object detection, Benchmark testing, Boosting BibRef

Kim, H.[Hanjae], Joung, S.[Sunghun], Kim, I.J.[Ig-Jae], Sohn, K.H.[Kwang-Hoon],
Shape-Adaptive Kernel Network for Dense Object Detection,
ICIP20(2046-2050)
IEEE DOI 2011
Kernel, Shape, Object detection, Detectors, Convolution, Feature extraction, Strain, Dense object detection, object deformation BibRef

Qiu, H.[Han], Ma, Y.C.[Yu-Chen], Li, Z.M.[Ze-Ming], Liu, S.T.[Song-Tao], Sun, J.[Jian],
BorderDet: Border Feature for Dense Object Detection,
ECCV20(I:549-564).
Springer DOI 2011
A point-like feature to guide the border search, for dense collection of objects. BibRef

Varadarajan, S.[Srikrishna], Kant, S.[Sonaal], Srivastava, M.M.[Muktabh Mayank],
Benchmark for Generic Product Detection: A Low Data Baseline for Dense Object Detection,
ICIAR20(I:30-41).
Springer DOI 2007
Generic detection, to use across applications. BibRef

Zhang, H.Y.[Hao-Yang], Wang, Y.[Ying], Dayoub, F.[Feras], Sünderhauf, N.[Niko],
VarifocalNet: An IoU-aware Dense Object Detector,
CVPR21(8510-8519)
IEEE DOI 2111
Location awareness, Training, Codes, Detectors, Benchmark testing BibRef

Chen, X., Girshick, R., He, K., Dollar, P.,
TensorMask: A Foundation for Dense Object Segmentation,
ICCV19(2061-2069)
IEEE DOI 2004
convolutional neural nets, image segmentation, object detection, tensors, Mask R-CNN, dense sliding-window instance segmentation, Image segmentation BibRef

Chapter on 2-D Feature Analysis, Extraction and Representations, Shape, Skeletons, Texture continues in
Fisheye Camera, Fisheye Image Detection, Analysis, Rectification .


Last update:Dec 17, 2025 at 15:38:33