Labonté, G.[Gilles],
Deck, W.C.,
Infrared target-flare discrimination using a ZISC hardware neural
network,
RealTimeIP(5), No. 1, March 2010, pp. xx-yy.
Springer DOI
1003
Not a specular issue, but similar.
BibRef
Walch, A.[Andreas],
Luksch, C.[Christian],
Szabo, A.[Attila],
Steinlechner, H.[Harald],
Haaser, G.[Georg],
Schwärzler, M.[Michael],
Maierhofer, S.[Stefan],
Lens flare prediction based on measurements with real-time
visualization,
VC(34), No. 9, September 2018, pp. 1155-1164.
Springer DOI
1809
BibRef
Vitoria, P.[Patricia],
Ballester, C.[Coloma],
Automatic Flare Spot Artifact Detection and Removal in Photographs,
JMIV(61), No. 4, May 2019, pp. 515-533.
Springer DOI
1904
BibRef
Dai, Y.K.[Yue-Kun],
Li, C.Y.[Chong-Yi],
Zhou, S.C.[Shang-Chen],
Feng, R.C.[Rui-Cheng],
Luo, Y.H.[Yi-Hang],
Loy, C.C.[Chen Change],
Flare7K++: Mixing Synthetic and Real Datasets for Nighttime Flare
Removal and Beyond,
PAMI(46), No. 11, November 2024, pp. 7041-7055.
IEEE DOI
2410
Task analysis, Image reconstruction, Feature extraction, Training,
Data models, Dogs, Computational modeling, Glare, nighttime photography
BibRef
Liu, Y.[Yan],
Huang, G.[Guan],
Qi, W.T.[Wen-Ting],
Li, Y.J.[Yu-Jie],
A flare removal network for night vision perception: Resistant to the
interference of complex light,
IET-IPR(18), No. 12, 2024, pp. 3192-3205.
DOI Link
2411
convolutional neural nets, image enhancement
BibRef
Deng, H.Y.[Hao-You],
Li, L.[Lida],
Zhang, F.[Feng],
Li, Z.Q.[Zhi-Qiang],
Xu, B.[Bin],
Lu, Q.B.[Qing-Bo],
Gao, C.X.[Chang-Xin],
Sang, N.[Nong],
Toward Blind Flare Removal Using Knowledge-Driven Flare-Level
Estimator,
IP(33), 2024, pp. 6114-6128.
IEEE DOI
2411
Training, Scattering, Lenses, Image restoration, Cameras,
Deep learning, Shape, Light sources, Image reconstruction,
image restoration
BibRef
Vasluianu, F.[Florin],
Wu, Z.[Zongwei],
Timofte, R.[Radu],
SFNet - A Spatial-Frequency Domain Neural Network For Image Lens
Flare Removal,
ICIP24(1711-1717)
IEEE DOI
2411
Integrated optics, Frequency-domain analysis, Optical imaging,
Feature extraction, Reflection, Image restoration,
Optics
BibRef
Zhou, Y.Y.[Yu-Yan],
Liang, D.[Dong],
Chen, S.C.[Song-Can],
Huang, S.J.[Sheng-Jun],
Yang, S.[Shuo],
Li, C.Y.[Chong-Yi],
Improving Lens Flare Removal with General-Purpose Pipeline and
Multiple Light Sources Recovery,
ICCV23(12923-12933)
IEEE DOI
2401
BibRef
Song, S.[Soonyong],
Bae, H.[Heechul],
Hard-negative Sampling with Cascaded Fine-Tuning Network to Boost
Flare Removal Performance in the Nighttime Images,
MIPI23(2843-2852)
IEEE DOI
2309
BibRef
Zhang, D.F.[Da-Feng],
Ouyang, J.[Jia],
Liu, G.Q.[Guan-Qun],
Wang, X.B.[Xia-Bing],
Kong, X.Y.[Xiang-Yu],
Jin, Z.[Zhezhu],
FF-Former: Swin Fourier Transformer for Nighttime Flare Removal,
MIPI23(2824-2832)
IEEE DOI
2309
BibRef
Dai, Y.[Yuekun],
Luo, Y.H.[Yi-Hang],
Zhou, S.C.[Shang-Chen],
Li, C.Y.[Chong-Yi],
Loy, C.C.[Chen Change],
Nighttime Smartphone Reflective Flare Removal Using Optical Center
Symmetry Prior,
CVPR23(20783-20791)
IEEE DOI
2309
BibRef
Dai, Y.K.[Yue-Kun],
Li, C.Y.[Chong-Yi],
Zhou, S.C.[Shang-Chen],
Feng, R.C.[Rui-Cheng],
Zhu, Q.P.[Qing-Peng],
Sun, Q.H.[Qian-Hui],
Sun, W.X.[Wen-Xiu],
Loy, C.C.[Chen Change],
Gu, J.W.[Jin-Wei],
Liu, S.[Shuai],
Wang, H.[Hao],
Feng, C.Y.[Chao-Yu],
Wang, L.Y.[Lu-Yang],
Shao, G.Q.[Guang-Qi],
Zhang, C.G.[Chen-Guang],
Wang, X.T.[Xiao-Tao],
Lei, L.[Lei],
Zhang, D.F.[Da-Feng],
Kong, X.Y.[Xiang-Yu],
Liu, G.Q.[Guan-Qun],
Bai, M.M.[Meng-Meng],
Ouyang, J.[Jia],
Wang, X.B.[Xia-Bing],
Yuan, J.H.[Jia-Hui],
Li, X.P.[Xin-Peng],
Jiang, C.Z.[Cheng-Zhi],
Jiang, T.[Ting],
Lin, W.J.[Wen-Jie],
Wu, Q.[Qi],
Han, M.Y.[Ming-Yan],
Luo, J.T.[Jin-Ting],
Yu, L.[Lei],
Fan, H.Q.[Hao-Qiang],
Liu, S.C.[Shuai-Cheng],
Yan, B.[Bo],
Li, Z.[Zhuang],
Li, Y.D.[Ya-Dong],
Wang, H.B.[Hong-Bin],
Song, S.[Soonyong],
Fu, M.H.[Ming-Han],
Khan, R.A.[Rayyan Azam],
Wu, F.X.[Fang-Xiang],
Zhang, Z.[Zhao],
Zhao, S.[Suiyi],
Zheng, H.[Huan],
Gao, Y.C.[Yang-Cheng],
Wei, Y.Y.[Yan-Yan],
Ren, J.H.[Jia-Huan],
Wang, B.[Bo],
Luo, Y.[Yan],
Gao, S.[Shuaibo],
Wu, W.H.[Wen-Hui],
Kang, S.[Sicong],
Akalwadi, N.[Nikhil],
Raichur, A.[Ankit],
Patil, V.[Vinod],
Allabakash, G.,
Swaroop, A.,
Joshi, A.[Amogh],
Desai, C.[Chaitra],
Tabib, R.A.[Ramesh Ashok],
Patil, U.[Ujwala],
Li, U.M.S.C.[Uma Mudenagudi Si-Cheng],
Zhu, R.X.[Ruo-Xi],
Lian, J.Z.[Jia-Zheng],
Xu, S.S.[Shu-Song],
Liu, Z.[Zihao],
Nathan, S.[Sabari],
Kansal, P.[Priya],
MIPI 2023 Challenge on Nighttime Flare Removal: Methods and Results,
MIPI23(2853-2863)
IEEE DOI
2309
BibRef
Qiao, X.T.[Xiao-Tian],
Hancke, G.P.[Gerhard P.],
Lau, R.W.H.[Rynson W. H.],
Light Source Guided Single-Image Flare Removal from Unpaired Data,
ICCV21(4157-4165)
IEEE DOI
2203
Geometry, Visualization, Shape, Image color analysis, Training data,
Scattering, Low-level and physics-based vision,
BibRef
Wu, Y.C.[Yi-Cheng],
He, Q.[Qiurui],
Xue, T.F.[Tian-Fan],
Garg, R.[Rahul],
Chen, J.[Jiawen],
Veeraraghavan, A.[Ashok],
Barron, J.T.[Jonathan T.],
How to Train Neural Networks for Flare Removal,
ICCV21(2219-2227)
IEEE DOI
2203
Neural networks, Pipelines, Training data, Optical computing,
Cameras, Optical imaging, Data models, Computational photography,
Low-level and physics-based vision
BibRef
Chapter on 3-D Shape from X -- Shading, Textures, Lasers, Structured Light, Focus, Line Drawings continues in
Three-Dimensional Information from Shadows .