16.7.2.7.5 Traffic Origin-Destination Analysis

Chapter Contents (Back)
Traffic Flow. Origin-Destination.

Zhou, X.S.[Xue-Song], Mahmassani, H.S.,
Dynamic origin-destination demand estimation using automatic vehicle identification data,
ITS(7), No. 1, March 2006, pp. 105-114.
IEEE DOI 0604
BibRef

Hu, S.R., Wang, C.M.,
Vehicle Detector Deployment Strategies for the Estimation of Network Origin-Destination Demands Using Partial Link Traffic Counts,
ITS(9), No. 2, June 2008, pp. 288-300.
IEEE DOI 0806
BibRef

Bauer, D.,
Estimating origin-destination-matrices depending on the time of the day from high frequent pedestrian entry and exit counts,
IET-ITS(6), No. 4, 2012, pp. 463-473.
DOI Link 1302
BibRef

Kattan, L., Abdulhai, B.,
Sensitivity Analysis of an Evolutionary-Based Time-Dependent Origin/Destination Estimation Framework,
ITS(13), No. 3, September 2012, pp. 1442-1453.
IEEE DOI 1209
BibRef

Toledo, T., Kolechkina, T.,
Estimation of Dynamic Origin-Destination Matrices Using Linear Assignment Matrix Approximations,
ITS(14), No. 2, 2013, pp. 618-626.
IEEE DOI 1307
dynamic traffic assignment; origin-destination (OD) matrix estimation BibRef

Yang, G.[Gege], Song, C.[Ci], Shu, H.[Hua], Zhang, J.[Jia], Pei, T.[Tao], Zhou, C.H.[Cheng-Hu],
Assessing Patient bypass Behavior Using Taxi Trip Origin-Destination (OD) Data,
IJGI(5), No. 9, 2016, pp. 157.
DOI Link 1610
BibRef

Ye, P., Wen, D.,
Optimal Traffic Sensor Location for Origin-Destination Estimation Using a Compressed Sensing Framework,
ITS(18), No. 7, July 2017, pp. 1857-1866.
IEEE DOI 1706
Coherence, Compressed sensing, Estimation, Minimization, Optimization, Sparse matrices, Transportation, Traffic sensor location, compressed sensing, traffic, flow, estimation BibRef

Hu, X., Chiu, Y.C., Villalobos, J.A., Nava, E.,
A Sequential Decomposition Framework and Method for Calibrating Dynamic Origin-Destination Demand in a Congested Network,
ITS(18), No. 10, October 2017, pp. 2790-2797.
IEEE DOI 1710
Calibration, Computational modeling, Data models, Estimation, Intelligent transportation systems, Solid modeling, Vehicle dynamics, O-D calibration, dynamic traffic assignment, one-norm formulation, shockwave propagation, simulation, model, calibration BibRef

Wang, Y.D.[Yan-Dong], Gu, Y.Y.[Yan-Yan], Dou, M.X.[Ming-Xuan], Qiao, M.L.[Meng-Ling],
Using Spatial Semantics and Interactions to Identify Urban Functional Regions,
IJGI(7), No. 4, 2018, pp. xx-yy.
DOI Link 1805
Using taxi origin/destination (O/D) flows. BibRef

Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., Lin, L.,
Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction,
ITS(20), No. 10, October 2019, pp. 3875-3887.
IEEE DOI 1910
Public transportation, Task analysis, Correlation, Neural networks, Urban areas, Context modeling, Predictive models, spatial-temporal modeling BibRef

Bauer, D., Richter, G., Asamer, J., Heilmann, B., Lenz, G., Kölbl, R.,
Quasi-Dynamic Estimation of OD Flows From Traffic Counts Without Prior OD Matrix,
ITS(19), No. 6, June 2018, pp. 2025-2034.
IEEE DOI 1806
Entropy, Estimation, Public transportation, Road transportation, Sensors, Urban areas, Origin-destination flow estimation, quasi-dynamic assumption BibRef

Wen, T.[Tao], Cai, C.[Chen], Gardner, L.[Lauren], Waller, S.T.[Steven Travis], Dixit, V.[Vinayak], Chen, F.[Fang],
Estimation of sparse O-D matrix accounting for demand volatility,
IET-ITS(12), No. 9, November 2018, pp. 1020-1026.
DOI Link 1810
Origin-destination (O-D) demand estimation. BibRef

Huang, Y.[Yang], Shi, K.F.[Kai-Fang], Zong, H.M.[Hui-Ming], Zhou, T.G.[Ting-Gang], Shen, J.W.[Jing-Wei],
Exploring Spatial and Temporal Connection Patterns among the Districts in Chongqing Based on Highway Passenger Flow,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link 2001
BibRef

Zhang, L.F.[Lian-Fa], Cheng, J.Q.[Jian-Quan], Jin, C.[Cheng],
Spatial Interaction Modeling of OD Flow Data: Comparing Geographically Weighted Negative Binomial Regression (GWNBR) and OLS (GWOLSR),
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link 1906
Origin-Destination flow data. BibRef

Ishikawa, K.[Kazuki], Nakayama, D.[Daichi],
Estimation of Origin-Destination Flows of Passenger Cars in 1925 in Old Tokyo City, Japan,
IJGI(8), No. 11, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Xiang, Q.L.[Qiu-Liang], Wu, Q.Y.[Qun-Yong],
Tree-Based and Optimum Cut-Based Origin-Destination Flow Clustering,
IJGI(8), No. 11, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Tao, R.[Ran], Gong, Z.Y.[Zhao-Ya], Ma, Q.W.[Qi-Wei], Thill, J.C.[Jean-Claude],
Boosting Computational Effectiveness in Big Spatial Flow Data Analysis with Intelligent Data Reduction,
IJGI(9), No. 5, 2020, pp. xx-yy.
DOI Link 2005
spatial origin-destination (OD) flow data. BibRef

Chu, K., Lam, A.Y.S., Li, V.O.K.,
Deep Multi-Scale Convolutional LSTM Network for Travel Demand and Origin-Destination Predictions,
ITS(21), No. 8, August 2020, pp. 3219-3232.
IEEE DOI 2008
Deep learning, Public transportation, Correlation, Predictive models, Data models, Travel demand prediction, origin-destination tensor BibRef

Guo, X.G.[Xiao-Gang], Xu, Z.J.[Zhi-Jie], Zhang, J.Q.[Jian-Qin], Lu, J.[Jian], Zhang, H.[Hao],
An OD Flow Clustering Method Based on Vector Constraints: A Case Study for Beijing Taxi Origin-Destination Data,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Rao, W.M.[Wen-Ming], Xia, J.X.[Jing-Xin], Wang, C.[Chen], Lu, Z.B.[Zhen-Bo], Chen, Q.[Qian],
Investigating impact of the heterogeneity of trajectory data distribution on origin-destination estimation: A spatial statistics approach,
IET-ITS(14), No. 10, October 2020, pp. 1218-1227.
DOI Link 2009
BibRef

Gao, Q.G.[Qing-Gang], Molloy, J.[Joseph], Axhausen, K.W.[Kay W.],
Trip Purpose Imputation Using GPS Trajectories with Machine Learning,
IJGI(10), No. 11, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Sobral, T., Galvăo, T., Borges, J.,
Knowledge-Assisted Visualization of Multi-Level Origin-Destination Flows Using Ontologies,
ITS(22), No. 4, April 2021, pp. 2168-2177.
IEEE DOI 2104
Ontologies, Data visualization, Stakeholders, Semantics, Data models, Urban areas, Tools, Ontologies, origin-destination matrices, Semantic Web BibRef

Yao, X.[Xin], Gao, Y.[Yong], Zhu, D.[Di], Manley, E.[Ed], Wang, J.[Jiaoe], Liu, Y.[Yu],
Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks,
ITS(22), No. 12, December 2021, pp. 7474-7484.
IEEE DOI 2112
Spatial databases, Gravity, Convolution, Biological system modeling, Data models, Predictive models, graph convolution BibRef

Behara, K.N.S.[Krishna N. S.], Bhaskar, A.[Ashish], Chung, E.[Edward],
A Novel Methodology to Assimilate Sub-Path Flows in Bi-Level OD Matrix Estimation Process,
ITS(22), No. 11, November 2021, pp. 6931-6941.
IEEE DOI 2112
Trraffic origin-destination. Estimation, Trajectory, Bluetooth, Matrices, Linear programming, Australia, Mathematical model, OD matrix estimation, Brisbane BibRef

Chen, D.J.[De-Jun], Wang, J.[Jing], Xiong, C.C.[Cong-Cong],
Research on origin-destination travel demand prediction method of inter-regional online taxi based on SpatialOD-BiConvLSTM,
IET-ITS(15), No. 12, 2021, pp. 1533-1547.
DOI Link 2112
BibRef

Heredia, C.[Cristóbal], Moreno, S.[Sebastián], Yushimito, W.F.[Wilfredo F.],
Characterization of Mobility Patterns With a Hierarchical Clustering of Origin-Destination GPS Taxi Data,
ITS(23), No. 8, August 2022, pp. 12700-12710.
IEEE DOI 2208
Public transportation, Global Positioning System, Clustering methods, Clustering algorithms, Data models, urban mobility patterns BibRef

Liang, Y.Y.[Yun-Yi], Wu, Z.Z.[Zhi-Zhou], Yang, H.C.[Hao-Chun], Wang, Y.H.[Yin-Hai],
A Novel Framework for Road Side Unit Location Optimization for Origin-Destination Demand Estimation,
ITS(23), No. 11, November 2022, pp. 21113-21126.
IEEE DOI 2212
Optimization, Estimation, Delays, Connected vehicles, Transportation, Roads, Pareto optimization, Sensor location, road side unit, origin-destination demand estimation BibRef

Luo, Q.[Qin], Lin, B.[Bin], Lyu, Y.T.[Yi-Tong], He, Y.X.[Yu-Xin], Zhang, X.C.[Xiao-Chun], Zhang, Z.Q.[Zhi-Qing],
Spatiotemporal path inference model for urban rail transit passengers based on travel time data,
IET-ITS(17), No. 7, 2023, pp. 1395-1414.
DOI Link 2307
passenger detention, passenger flow assignment, path inference, travel time, urban rail transit BibRef

Englezou, Y.[Yiolanda], Timotheou, S.[Stelios], Panayiotou, C.G.[Christos G.],
Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics,
ITS(25), No. 8, August 2024, pp. 8819-8836.
IEEE DOI 2408
Estimation, Vehicle dynamics, Data models, Optimization, Europe, Roads, Matrix converters, Origin-destination (OD) matrix estimation, nonlinear optimisation BibRef

Chen, P.[Peng], Wang, Z.Y.[Zi-Yan], Zhou, B.[Bin], Yu, G.Z.[Gui-Zhen],
Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning,
ITS(25), No. 11, November 2024, pp. 17147-17159.
IEEE DOI 2411
Estimation, Roads, Data models, Feature extraction, Trajectory, Vehicle dynamics, Noise reduction, Urban traffic, data fusion BibRef

Kheyrabadi, S.A.[Salman Aghidi], Mamdoohi, A.R.[Amir Reza],
The Influence of Origin Attributes on the Destination Choice of Discretionary Home-Based Walk Trips,
IJGI(13), No. 7, 2024, pp. 218.
DOI Link 2408
BibRef

Xu, Y.[Yi], Han, L.Z.[Liang-Zhe], Zhu, T.Y.[Tong-Yu], Sun, L.L.[Lei-Lei], Du, B.[Bowen], Lv, W.F.[Wei-Feng],
Continuous-Time and Discrete-Time Representation Learning for Origin-Destination Demand Prediction,
ITS(25), No. 3, March 2024, pp. 2382-2393.
IEEE DOI 2405
Representation learning, Transportation, Predictive models, Planning, Heuristic algorithms, Fuses, Forecasting, urban transportation systems BibRef

Owais, M.[Mahmoud],
Deep Learning for Integrated Origin-Destination Estimation and Traffic Sensor Location Problems,
ITS(25), No. 7, July 2024, pp. 6501-6513.
IEEE DOI 2407
Sensitivity analysis, Costs, Genetic algorithms, Reliability, Maximum likelihood estimation, Mathematical models, traffic data prediction BibRef

Ye, J.[Jiexia], Zhao, J.J.[Juan-Juan], Zheng, F.[Furong], Xu, C.Z.[Cheng-Zhong],
A Heterogeneous Graph Convolution Based Method for Short-Term OD Flow Completion and Prediction in a Metro System,
ITS(25), No. 11, November 2024, pp. 15614-15627.
IEEE DOI 2411
Real-time systems, Predictive models, Correlation, Adaptation models, Spatiotemporal phenomena, Accuracy, heterogeneous graph BibRef

Peng, X.R.[Xiao-Ran], Hu, R.M.[Rui-Min], Wang, X.C.[Xiao-Chen], Huang, N.[Nana],
Exploring changes in residents' daily activity patterns through sequence visualization analysis,
IET-ITS(18), No. 10, 2024, pp. 1879-1894.
DOI Link 2411
behavioural sciences computing, big data, data mining, data visualization, traveller information BibRef

Qin, Z.L.[Zhen-Lin], Zhang, P.F.[Peng-Fei], Ma, Z.L.[Zhen-Liang],
DeepAGS: Deep learning with activity, geography and sequential information in predicting an individual's next trip destination,
IET-ITS(18), No. 10, 2024, pp. 1895-1909.
DOI Link 2411
artificial intelligence, Big Data, public transport, smart cards, transportation BibRef

Tang, T.L.[Tian-Li], Mao, J.N.[Jian-Nan], Liu, R.H.[Rong-Hui], Liu, Z.Y.[Zhi-Yuan], Wang, Y.R.[Yi-Ran], Huang, D.[Di],
Origin-Destination Matrix Prediction in Public Transport Networks: Incorporating Heterogeneous Direct and Transfer Trips,
ITS(25), No. 12, December 2024, pp. 19889-19903.
IEEE DOI 2412
Predictive models, Data models, Feature extraction, Deep learning, Wireless fidelity, Roads, Graph convolutional networks, spatio-temporal feature BibRef

Song, Y.C.[Yu-Chen], Li, D.W.[Da-Wei], Ma, Z.L.[Zhen-Liang], Zhang, T.[Tong], Liu, D.J.[Dong-Jie], He, C.Q.[Chong-Qi],
Dynamic Recursive Logit Model for Vehicle Driving Route Choices and Path Inference with Incomplete Fixed Location Sensor Data,
ITS(25), No. 12, December 2024, pp. 19929-19942.
IEEE DOI 2412
Vehicle dynamics, Radiofrequency identification, Global Positioning System, Data models, Logistic regression, RFID data BibRef

Guimarăes, P.M.F.[Pedro M. F.], Ferreira, F.[Flora], Wojtak, W.[Weronika], Barbosa, P.J.S.[Paulo J. S.], Monteiro, S.[Sérgio], Bicho, E.[Estela], Erlhagen, W.[Wolfram],
A Dynamic Neural Field Approach for Intelligent Cockpits: Online Learning and Prediction of Traveling Routines,
ITS(25), No. 12, December 2024, pp. 20240-20255.
IEEE DOI 2412
Vehicles, Vehicle dynamics, Predictive models, Automobiles, Multimedia systems, Global Positioning System, Europe, Data models, spatio-temporal prediction BibRef

Rong, C.[Can], Ding, J.T.[Jing-Tao], Li, Y.[Yong],
An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques,
Surveys(57), No. 1, October 2024, pp. xx-yy.
DOI Link Code:
WWW Link. 2501
Urban mobility, origin-destination flows, modeling, interdisciplines BibRef

He, M.W.[Ming-Wei], Chen, N.[Na], He, Y.[Yueren], Li, J.B.[Jian-Bo], Liu, Y.[Yang],
Exploring the Activity-Travel Patterns of Multi-Purpose Commuters on Workdays Based on Activity Chains and Time Allocation: Evidence from Kunming, China,
IJGI(13), No. 12, 2024, pp. 446.
DOI Link 2501
BibRef

Yuan, X.M.[Xiao-Ming], Luo, Z.Y.[Zhen-Yu], Zhang, N.[Ning], Guo, G.[Ge], Wang, L.[Lin], Li, C.L.[Chang-La], Niyato, D.[Dusit],
Federated Transfer Learning for Privacy-Preserved Cross-City Traffic Flow Prediction,
ITS(26), No. 4, April 2025, pp. 4418-4431.
IEEE DOI 2504
Data models, Urban areas, Predictive models, Transfer learning, Training, Adaptation models, Accuracy, Roads, Data privacy, temporal convolutional network BibRef

Li, Y.[Yige], Jiang, Y.[Ying], Duan, J.[Jin],
Quantifying Administrative and Functional Border Effects on Commuting and Non-Commuting Flows: A Case Study of the Shanghai-Suzhou-Jiaxing Area,
IJGI(14), No. 3, 2025, pp. 133.
DOI Link 2503
BibRef

Yuan, Z.[Zehao], Chen, X.Y.[Xuan-Yan], Chen, B.[Biyu], Luo, Y.[Yubo], Zhang, Y.[Yu], Teng, W.X.[Wen-Xin], Zhang, C.[Chao],
Generating Large-Scale Origin-Destination Matrix via Progressive Growing Generative Adversarial Networks Model,
IJGI(14), No. 4, 2025, pp. 172.
DOI Link 2505
BibRef

Shan, Z.Y.[Zhen-Yu], Yang, F.[Fei], Shi, X.Z.[Xing-Zi], Cui, Y.P.[Ya-Ping],
Hybrid Learning Model of Global-Local Graph Attention Network and XGBoost for Inferring Origin-Destination Flows,
IJGI(14), No. 5, 2025, pp. 182.
DOI Link 2505
BibRef

Zhang, C.[Cheng], Chen, X.[Xin], Zhao, J.[Jing], Jiang, Z.[Zehao], Chung, E.[Edward],
Estimating Bus Passenger Origin-Destination Flow via Passenger Reidentification Using Video Images,
ITS(26), No. 6, June 2025, pp. 8353-8367.
IEEE DOI 2506
Estimation, Accuracy, Data mining, Cameras, Smart cards, Wireless fidelity, Feature extraction, Visualization, video images BibRef

Lun, M.[Maoqi], Wang, P.X.[Pei-Xiao], Wu, S.[Sheng], Zhang, H.[Hengcai], Cheng, S.[Shifen], Lu, F.[Feng],
Predicting the Next Location of Urban Individuals via a Representation-Enhanced Multi-View Learning Network,
IJGI(14), No. 8, 2025, pp. 302.
DOI Link 2509
BibRef

Li, C.J.[Chuan-Jia], Chen, Y.[Yong], Xu, H.[Haoge], Chen, X.[Xiqun], Lee, D.H.[Der-Horng],
Multi-View Hypergraph-Based Ride-Sourcing Origin-Destination Demand Prediction,
ITS(26), No. 9, September 2025, pp. 13217-13231.
IEEE DOI 2510
Predictive models, Accuracy, Feature extraction, Correlation, Real-time systems, Adaptation models, Pricing, Logic gates, motif BibRef

Wu, X.S.[Xue-Song], Pan, T.[Tianlu], He, Z.C.[Zhao-Cheng],
Physics-Informed Mobility Perception Networks for Origin-Destination Flow Prediction,
ITS(26), No. 10, October 2025, pp. 15134-15149.
IEEE DOI Code:
WWW Link. 2511
Predictive models, Urban areas, Neural networks, Mathematical models, Gravity, Deep learning, Correlation, diffusion process BibRef

Eftekhar, Z.[Zahra], Behrouzi, S.[Saman], Krishnakumari, P.[Panchamy], Pel, A.[Adam], van Lint, H.[Hans],
The Role of Spatial Features and Adjacency in Data-Driven Short-Term Prediction of Trip Production: An Exploratory Study in The Netherlands,
ITS(26), No. 11, November 2025, pp. 19582-19604.
IEEE DOI 2511
Predictive models, Production, Long short term memory, Accuracy, Hidden Markov models, Correlation, Computational modeling, residual analysis BibRef


Mojtabaee, P., Molavi, M., Taleai, M.,
Exploring Driving Factors of Higher Paid Taxi Trips Using Origin-destination GPS Data (case Study: Green Taxis of New York City),
SMPR19(745-748).
DOI Link 1912
BibRef

Lee, M., Nam, H., Jun, C.,
Origin-destination-based Public Transport Service Gap,
GeoDisast18(283-290).
DOI Link 1901
BibRef

Morimura, T.[Tetsuro], Kato, S.[Sei],
Statistical Origin-destination generation with multiple sources,
ICPR12(3443-3446).
WWW Link. 1302
BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Traffic Simulation, Simulator, Traffic .


Last update:Dec 17, 2025 at 15:38:33