16.7.2.7.3 Traffic Origin-Destination Analysis

Chapter Contents (Back)
Traffic Flow. Origin-Destination.

Zhou, X.S.[Xue-Song], Mahmassani, H.S.,
Dynamic origin-destination demand estimation using automatic vehicle identification data,
ITS(7), No. 1, March 2006, pp. 105-114.
IEEE DOI 0604
BibRef

Hu, S.R., Wang, C.M.,
Vehicle Detector Deployment Strategies for the Estimation of Network Origin-Destination Demands Using Partial Link Traffic Counts,
ITS(9), No. 2, June 2008, pp. 288-300.
IEEE DOI 0806
BibRef

Bauer, D.,
Estimating origin-destination-matrices depending on the time of the day from high frequent pedestrian entry and exit counts,
IET-ITS(6), No. 4, 2012, pp. 463-473.
DOI Link 1302
BibRef

Kattan, L., Abdulhai, B.,
Sensitivity Analysis of an Evolutionary-Based Time-Dependent Origin/Destination Estimation Framework,
ITS(13), No. 3, September 2012, pp. 1442-1453.
IEEE DOI 1209
BibRef

Toledo, T., Kolechkina, T.,
Estimation of Dynamic Origin-Destination Matrices Using Linear Assignment Matrix Approximations,
ITS(14), No. 2, 2013, pp. 618-626.
IEEE DOI 1307
dynamic traffic assignment; origin-destination (OD) matrix estimation BibRef

Yang, G.[Gege], Song, C.[Ci], Shu, H.[Hua], Zhang, J.[Jia], Pei, T.[Tao], Zhou, C.H.[Cheng-Hu],
Assessing Patient bypass Behavior Using Taxi Trip Origin-Destination (OD) Data,
IJGI(5), No. 9, 2016, pp. 157.
DOI Link 1610
BibRef

Ye, P., Wen, D.,
Optimal Traffic Sensor Location for Origin-Destination Estimation Using a Compressed Sensing Framework,
ITS(18), No. 7, July 2017, pp. 1857-1866.
IEEE DOI 1706
Coherence, Compressed sensing, Estimation, Minimization, Optimization, Sparse matrices, Transportation, Traffic sensor location, compressed sensing, traffic, flow, estimation BibRef

Hu, X., Chiu, Y.C., Villalobos, J.A., Nava, E.,
A Sequential Decomposition Framework and Method for Calibrating Dynamic Origin-Destination Demand in a Congested Network,
ITS(18), No. 10, October 2017, pp. 2790-2797.
IEEE DOI 1710
Calibration, Computational modeling, Data models, Estimation, Intelligent transportation systems, Solid modeling, Vehicle dynamics, O-D calibration, dynamic traffic assignment, one-norm formulation, shockwave propagation, simulation, model, calibration BibRef

Wang, Y.D.[Yan-Dong], Gu, Y.Y.[Yan-Yan], Dou, M.X.[Ming-Xuan], Qiao, M.L.[Meng-Ling],
Using Spatial Semantics and Interactions to Identify Urban Functional Regions,
IJGI(7), No. 4, 2018, pp. xx-yy.
DOI Link 1805
Using taxi origin/destination (O/D) flows. BibRef

Liu, L., Qiu, Z., Li, G., Wang, Q., Ouyang, W., Lin, L.,
Contextualized Spatial-Temporal Network for Taxi Origin-Destination Demand Prediction,
ITS(20), No. 10, October 2019, pp. 3875-3887.
IEEE DOI 1910
Public transportation, Task analysis, Correlation, Neural networks, Urban areas, Context modeling, Predictive models, spatial-temporal modeling BibRef

Bauer, D., Richter, G., Asamer, J., Heilmann, B., Lenz, G., Kölbl, R.,
Quasi-Dynamic Estimation of OD Flows From Traffic Counts Without Prior OD Matrix,
ITS(19), No. 6, June 2018, pp. 2025-2034.
IEEE DOI 1806
Entropy, Estimation, Public transportation, Road transportation, Sensors, Urban areas, Origin-destination flow estimation, quasi-dynamic assumption BibRef

Wen, T.[Tao], Cai, C.[Chen], Gardner, L.[Lauren], Waller, S.T.[Steven Travis], Dixit, V.[Vinayak], Chen, F.[Fang],
Estimation of sparse O-D matrix accounting for demand volatility,
IET-ITS(12), No. 9, November 2018, pp. 1020-1026.
DOI Link 1810
Origin-destination (O-D) demand estimation. BibRef

Huang, Y.[Yang], Shi, K.F.[Kai-Fang], Zong, H.M.[Hui-Ming], Zhou, T.G.[Ting-Gang], Shen, J.W.[Jing-Wei],
Exploring Spatial and Temporal Connection Patterns among the Districts in Chongqing Based on Highway Passenger Flow,
RS(12), No. 1, 2019, pp. xx-yy.
DOI Link 2001
BibRef

Zhang, L.F.[Lian-Fa], Cheng, J.Q.[Jian-Quan], Jin, C.[Cheng],
Spatial Interaction Modeling of OD Flow Data: Comparing Geographically Weighted Negative Binomial Regression (GWNBR) and OLS (GWOLSR),
IJGI(8), No. 5, 2019, pp. xx-yy.
DOI Link 1906
Origin-Destination flow data. BibRef

Ishikawa, K.[Kazuki], Nakayama, D.[Daichi],
Estimation of Origin-Destination Flows of Passenger Cars in 1925 in Old Tokyo City, Japan,
IJGI(8), No. 11, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Xiang, Q.L.[Qiu-Liang], Wu, Q.Y.[Qun-Yong],
Tree-Based and Optimum Cut-Based Origin-Destination Flow Clustering,
IJGI(8), No. 11, 2019, pp. xx-yy.
DOI Link 1912
BibRef

Tao, R.[Ran], Gong, Z.Y.[Zhao-Ya], Ma, Q.W.[Qi-Wei], Thill, J.C.[Jean-Claude],
Boosting Computational Effectiveness in Big Spatial Flow Data Analysis with Intelligent Data Reduction,
IJGI(9), No. 5, 2020, pp. xx-yy.
DOI Link 2005
spatial origin-destination (OD) flow data. BibRef

Chu, K., Lam, A.Y.S., Li, V.O.K.,
Deep Multi-Scale Convolutional LSTM Network for Travel Demand and Origin-Destination Predictions,
ITS(21), No. 8, August 2020, pp. 3219-3232.
IEEE DOI 2008
Deep learning, Public transportation, Correlation, Predictive models, Data models, Travel demand prediction, origin-destination tensor BibRef

Guo, X.G.[Xiao-Gang], Xu, Z.J.[Zhi-Jie], Zhang, J.Q.[Jian-Qin], Lu, J.[Jian], Zhang, H.[Hao],
An OD Flow Clustering Method Based on Vector Constraints: A Case Study for Beijing Taxi Origin-Destination Data,
IJGI(9), No. 2, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Rao, W.M.[Wen-Ming], Xia, J.X.[Jing-Xin], Wang, C.[Chen], Lu, Z.B.[Zhen-Bo], Chen, Q.[Qian],
Investigating impact of the heterogeneity of trajectory data distribution on origin-destination estimation: A spatial statistics approach,
IET-ITS(14), No. 10, October 2020, pp. 1218-1227.
DOI Link 2009
BibRef

Sobral, T., Galvăo, T., Borges, J.,
Knowledge-Assisted Visualization of Multi-Level Origin-Destination Flows Using Ontologies,
ITS(22), No. 4, April 2021, pp. 2168-2177.
IEEE DOI 2104
Ontologies, Data visualization, Stakeholders, Semantics, Data models, Urban areas, Tools, Ontologies, origin-destination matrices, Semantic Web BibRef

Yao, X.[Xin], Gao, Y.[Yong], Zhu, D.[Di], Manley, E.[Ed], Wang, J.[Jiaoe], Liu, Y.[Yu],
Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks,
ITS(22), No. 12, December 2021, pp. 7474-7484.
IEEE DOI 2112
Spatial databases, Gravity, Convolution, Biological system modeling, Data models, Predictive models, graph convolution BibRef

Behara, K.N.S.[Krishna N. S.], Bhaskar, A.[Ashish], Chung, E.[Edward],
A Novel Methodology to Assimilate Sub-Path Flows in Bi-Level OD Matrix Estimation Process,
ITS(22), No. 11, November 2021, pp. 6931-6941.
IEEE DOI 2112
Trraffic origin-destination. Estimation, Trajectory, Bluetooth, Matrices, Linear programming, Australia, Mathematical model, OD matrix estimation, Brisbane BibRef

Chen, D.J.[De-Jun], Wang, J.[Jing], Xiong, C.C.[Cong-Cong],
Research on origin-destination travel demand prediction method of inter-regional online taxi based on SpatialOD-BiConvLSTM,
IET-ITS(15), No. 12, 2021, pp. 1533-1547.
DOI Link 2112
BibRef

Heredia, C.[Cristóbal], Moreno, S.[Sebastián], Yushimito, W.F.[Wilfredo F.],
Characterization of Mobility Patterns With a Hierarchical Clustering of Origin-Destination GPS Taxi Data,
ITS(23), No. 8, August 2022, pp. 12700-12710.
IEEE DOI 2208
Public transportation, Global Positioning System, Clustering methods, Clustering algorithms, Data models, urban mobility patterns BibRef

Liang, Y.Y.[Yun-Yi], Wu, Z.Z.[Zhi-Zhou], Yang, H.C.[Hao-Chun], Wang, Y.H.[Yin-Hai],
A Novel Framework for Road Side Unit Location Optimization for Origin-Destination Demand Estimation,
ITS(23), No. 11, November 2022, pp. 21113-21126.
IEEE DOI 2212
Optimization, Estimation, Delays, Connected vehicles, Transportation, Roads, Pareto optimization, Sensor location, road side unit, origin-destination demand estimation BibRef

Luo, Q.[Qin], Lin, B.[Bin], Lyu, Y.T.[Yi-Tong], He, Y.X.[Yu-Xin], Zhang, X.C.[Xiao-Chun], Zhang, Z.Q.[Zhi-Qing],
Spatiotemporal path inference model for urban rail transit passengers based on travel time data,
IET-ITS(17), No. 7, 2023, pp. 1395-1414.
DOI Link 2307
passenger detention, passenger flow assignment, path inference, travel time, urban rail transit BibRef

Englezou, Y.[Yiolanda], Timotheou, S.[Stelios], Panayiotou, C.G.[Christos G.],
Path-Based Origin-Destination Matrix Estimation Utilizing Macroscopic Traffic Dynamics,
ITS(25), No. 8, August 2024, pp. 8819-8836.
IEEE DOI 2408
Estimation, Vehicle dynamics, Data models, Optimization, Europe, Roads, Matrix converters, Origin-destination (OD) matrix estimation, nonlinear optimisation BibRef

Chen, P.[Peng], Wang, Z.Y.[Zi-Yan], Zhou, B.[Bin], Yu, G.Z.[Gui-Zhen],
Dynamic Origin-Destination Flow Imputation Using Feature-Based Transfer Learning,
ITS(25), No. 11, November 2024, pp. 17147-17159.
IEEE DOI 2411
Estimation, Roads, Data models, Feature extraction, Trajectory, Vehicle dynamics, Noise reduction, Urban traffic, data fusion BibRef

Kheyrabadi, S.A.[Salman Aghidi], Mamdoohi, A.R.[Amir Reza],
The Influence of Origin Attributes on the Destination Choice of Discretionary Home-Based Walk Trips,
IJGI(13), No. 7, 2024, pp. 218.
DOI Link 2408
BibRef

Xu, Y.[Yi], Han, L.Z.[Liang-Zhe], Zhu, T.Y.[Tong-Yu], Sun, L.L.[Lei-Lei], Du, B.[Bowen], Lv, W.F.[Wei-Feng],
Continuous-Time and Discrete-Time Representation Learning for Origin-Destination Demand Prediction,
ITS(25), No. 3, March 2024, pp. 2382-2393.
IEEE DOI 2405
Representation learning, Transportation, Predictive models, Planning, Heuristic algorithms, Fuses, Forecasting, urban transportation systems BibRef

Owais, M.[Mahmoud],
Deep Learning for Integrated Origin-Destination Estimation and Traffic Sensor Location Problems,
ITS(25), No. 7, July 2024, pp. 6501-6513.
IEEE DOI 2407
Sensitivity analysis, Costs, Genetic algorithms, Reliability, Maximum likelihood estimation, Mathematical models, traffic data prediction BibRef

Ye, J.[Jiexia], Zhao, J.J.[Juan-Juan], Zheng, F.[Furong], Xu, C.Z.[Cheng-Zhong],
A Heterogeneous Graph Convolution Based Method for Short-Term OD Flow Completion and Prediction in a Metro System,
ITS(25), No. 11, November 2024, pp. 15614-15627.
IEEE DOI 2411
Real-time systems, Predictive models, Correlation, Adaptation models, Spatiotemporal phenomena, Accuracy, heterogeneous graph BibRef

Peng, X.R.[Xiao-Ran], Hu, R.M.[Rui-Min], Wang, X.C.[Xiao-Chen], Huang, N.[Nana],
Exploring changes in residents' daily activity patterns through sequence visualization analysis,
IET-ITS(18), No. 10, 2024, pp. 1879-1894.
DOI Link 2411
behavioural sciences computing, big data, data mining, data visualization, traveller information BibRef

Qin, Z.L.[Zhen-Lin], Zhang, P.F.[Peng-Fei], Ma, Z.L.[Zhen-Liang],
DeepAGS: Deep learning with activity, geography and sequential information in predicting an individual's next trip destination,
IET-ITS(18), No. 10, 2024, pp. 1895-1909.
DOI Link 2411
artificial intelligence, Big Data, public transport, smart cards, transportation BibRef

Tang, T.L.[Tian-Li], Mao, J.N.[Jian-Nan], Liu, R.H.[Rong-Hui], Liu, Z.Y.[Zhi-Yuan], Wang, Y.[Yiran], Huang, D.[Di],
Origin-Destination Matrix Prediction in Public Transport Networks: Incorporating Heterogeneous Direct and Transfer Trips,
ITS(25), No. 12, December 2024, pp. 19889-19903.
IEEE DOI 2412
Predictive models, Data models, Feature extraction, Deep learning, Wireless fidelity, Roads, Graph convolutional networks, spatio-temporal feature BibRef

Song, Y.C.[Yu-Chen], Li, D.W.[Da-Wei], Ma, Z.L.[Zhen-Liang], Zhang, T.[Tong], Liu, D.J.[Dong-Jie], He, C.Q.[Chong-Qi],
Dynamic Recursive Logit Model for Vehicle Driving Route Choices and Path Inference with Incomplete Fixed Location Sensor Data,
ITS(25), No. 12, December 2024, pp. 19929-19942.
IEEE DOI 2412
Vehicle dynamics, Radiofrequency identification, Global Positioning System, Data models, Logistic regression, RFID data BibRef

Guimarăes, P.M.F.[Pedro M. F.], Ferreira, F.[Flora], Wojtak, W.[Weronika], Barbosa, P.J.S.[Paulo J. S.], Monteiro, S.[Sérgio], Bicho, E.[Estela], Erlhagen, W.[Wolfram],
A Dynamic Neural Field Approach for Intelligent Cockpits: Online Learning and Prediction of Traveling Routines,
ITS(25), No. 12, December 2024, pp. 20240-20255.
IEEE DOI 2412
Vehicles, Vehicle dynamics, Predictive models, Automobiles, Multimedia systems, Global Positioning System, Europe, Data models, spatio-temporal prediction BibRef

Rong, C.[Can], Ding, J.T.[Jing-Tao], Li, Y.[Yong],
An Interdisciplinary Survey on Origin-destination Flows Modeling: Theory and Techniques,
Surveys(57), No. 1, October 2024, pp. xx-yy.
DOI Link Code:
WWW Link. 2501
Urban mobility, origin-destination flows, modeling, interdisciplines BibRef

He, M.W.[Ming-Wei], Chen, N.[Na], He, Y.[Yueren], Li, J.B.[Jian-Bo], Liu, Y.[Yang],
Exploring the Activity-Travel Patterns of Multi-Purpose Commuters on Workdays Based on Activity Chains and Time Allocation: Evidence from Kunming, China,
IJGI(13), No. 12, 2024, pp. 446.
DOI Link 2501
BibRef


Mojtabaee, P., Molavi, M., Taleai, M.,
Exploring Driving Factors of Higher Paid Taxi Trips Using Origin-destination GPS Data (case Study: Green Taxis of New York City),
SMPR19(745-748).
DOI Link 1912
BibRef

Lee, M., Nam, H., Jun, C.,
Origin-destination-based Public Transport Service Gap,
GeoDisast18(283-290).
DOI Link 1901
BibRef

Morimura, T.[Tetsuro], Kato, S.[Sei],
Statistical Origin-destination generation with multiple sources,
ICPR12(3443-3446).
WWW Link. 1302
BibRef

Chapter on Motion -- Feature-Based, Long Range, Motion and Structure Estimates, Tracking, Surveillance, Activities continues in
Emission Control Issues in Traffic Control .


Last update:Mar 17, 2025 at 20:02:03