24.2.2.6.8 Landslide Analysis, Earthquake Related, Seismic Analysis

Chapter Contents (Back)
Landslide Susceptibility. Landslides. Earthquakes. Seismic. General Landslides:
See also Landslide Detection, Analysis, Damage Assessment, Deformations. Fault zones:
See also Geologic Mapping, Geology Analysis, Mineralogy, Fault Zones.

Lacroix, P.[Pascal], Zavala, B.[Bilberto], Berthier, E.[Etienne], Audin, L.[Laurence],
Supervised Method of Landslide Inventory Using Panchromatic SPOT5 Images and Application to the Earthquake-Triggered Landslides of Pisco (Peru, 2007, Mw8.0),
RS(5), No. 6, 2013, pp. 2590-2616.
DOI Link 1307
BibRef

Kropácek, J.[Jan], Varilová, Z.[Zuzana], Baron, I.[Ivo], Bhattacharya, A.[Atanu], Eberle, J.[Joachim], Hochschild, V.[Volker],
Remote Sensing for Characterisation and Kinematic Analysis of Large Slope Failures: Debre Sina Landslide, Main Ethiopian Rift Escarpment,
RS(7), No. 12, 2015, pp. 15821.
DOI Link 1601
BibRef

Zhou, S.[Suhua], Chen, G.Q.[Guang-Qi], Fang, L.G.[Li-Gang],
Distribution Pattern of Landslides Triggered by the 2014 Ludian Earthquake of China: Implications for Regional Threshold Topography and the Seismogenic Fault Identification,
IJGI(5), No. 4, 2016, pp. 46.
DOI Link 1604
BibRef

Ekhtari, N., Glennie, C.L.,
High-Resolution Mapping of Near-Field Deformation With Airborne Earth Observation Data, a Comparison Study,
GeoRS(56), No. 3, March 2018, pp. 1598-1614.
IEEE DOI 1804
earthquakes, faulting, geomorphology, geophysical image processing, iterative methods, remote sensing by laser beam, seismology, structure from motion (SfM) BibRef

Kusari, A., Glennie, C.L., Brooks, B.A., Ericksen, T.L.,
Precise Registration of Laser Mapping Data by Planar Feature Extraction for Deformation Monitoring,
GeoRS(57), No. 6, June 2019, pp. 3404-3422.
IEEE DOI 1906
Octrees, Earthquakes, Feature extraction, Strain, Laser radar, Seismic measurements, LiDAR, registration BibRef

Shao, X.Y.[Xiao-Yi], Ma, S.Y.[Si-Yuan], Xu, C.[Chong], Zhang, P.F.[Peng-Fei], Wen, B.[Boyu], Tian, Y.Y.[Ying-Ying], Zhou, Q.[Qing], Cui, Y.L.[Yu-Long],
Planet Image-Based Inventorying and Machine Learning-Based Susceptibility Mapping for the Landslides Triggered by the 2018 Mw6.6 Tomakomai, Japan Earthquake,
RS(11), No. 8, 2019, pp. xx-yy.
DOI Link 1905
BibRef

Shao, X.Y.[Xiao-Yi], Xu, C.[Chong], Ma, S.Y.[Si-Yuan], Zhou, Q.[Qing],
Effects of Seismogenic Faults on the Predictive Mapping of Probability to Earthquake-Triggered Landslides,
IJGI(8), No. 8, 2019, pp. xx-yy.
DOI Link 1909
BibRef

Liu, W.[Wen], Yamazaki, F.[Fumio], Maruyama, Y.[Yoshihisa],
Detection of Earthquake-Induced Landslides during the 2018 Kumamoto Earthquake Using Multitemporal Airborne Lidar Data,
RS(11), No. 19, 2019, pp. xx-yy.
DOI Link 1910
BibRef

Hu, Q.[Qiao], Zhou, Y.[Yi], Wang, S.X.[Shi-Xing], Wang, F.[Futao], Wang, H.J.[Hong-Jie],
Improving the Accuracy of Landslide Detection in 'Off-site' Area by Machine Learning Model Portability Comparison: A Case Study of Jiuzhaigou Earthquake, China,
RS(11), No. 21, 2019, pp. xx-yy.
DOI Link 1911
BibRef

de Donatis, M.[Mauro], Pappafico, G.F.[Giulio F.], Romeo, R.W.[Roberto W.],
A Field Data Acquisition Method and Tools for Hazard Evaluation of Earthquake-Induced Landslides with Open Source Mobile GIS,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Meena, S.R.[Sansar Raj], Ghorbanzadeh, O.[Omid], Blaschke, T.[Thomas],
A Comparative Study of Statistics-Based Landslide Susceptibility Models: A Case Study of the Region Affected by the Gorkha Earthquake in Nepal,
IJGI(8), No. 2, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Dou, J.[Jie], Yunus, A.P.[Ali P.], Bui, D.T.[Dieu Tien], Sahana, M.[Mehebub], Chen, C.W.[Chi-Wen], Zhu, Z.F.[Zhong-Fan], Wang, W.D.[Wei-Dong], Pham, B. .T.[Binh Thai],
Evaluating GIS-Based Multiple Statistical Models and Data Mining for Earthquake and Rainfall-Induced Landslide Susceptibility Using the LiDAR DEM,
RS(11), No. 6, 2019, pp. xx-yy.
DOI Link 1903
BibRef

Liu, P.[Peng], Wei, Y.M.[Yong-Ming], Wang, Q.J.[Qin-Jun], Chen, Y.[Yu], Xie, J.J.[Jing-Jing],
Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model,
RS(12), No. 5, 2020, pp. xx-yy.
DOI Link 2003
BibRef

Chen, Y.[Yu], Wei, Y.M.[Yong-Ming], Wang, Q.J.[Qin-Jun], Chen, F.[Fang], Lu, C.Y.[Chun-Yan], Lei, S.H.[Shao-Hua],
Mapping Post-Earthquake Landslide Susceptibility: A U-Net Like Approach,
RS(12), No. 17, 2020, pp. xx-yy.
DOI Link 2009
BibRef

Chen, X.L.[Xiao-Li], Shan, X.J.[Xin-Jian], Wang, M.M.[Ming-Ming], Liu, C.G.[Chun-Guo], Han, N.N.[Na-Na],
Distribution Pattern of Coseismic Landslides Triggered by the 2017 Jiuzhaigou Ms 7.0 Earthquake of China: Control of Seismic Landslide Susceptibility,
IJGI(9), No. 4, 2020, pp. xx-yy.
DOI Link 2005
BibRef

Zhang, P.F.[Peng-Fei], Xu, C.[Chong], Ma, S.Y.[Si-Yuan], Shao, X.Y.[Xiao-Yi], Tian, Y.Y.[Ying-Ying], Wen, B.[Boyu],
Automatic Extraction of Seismic Landslides in Large Areas with Complex Environments Based on Deep Learning: An Example of the 2018 Iburi Earthquake, Japan,
RS(12), No. 23, 2020, pp. xx-yy.
DOI Link 2012
BibRef

Lei, J.H.[Jing-Hao], Ren, Z.[Zhikun], Oguchi, T.[Takashi], Zhang, P.Z.[Pei-Zhen], Uchiyama, S.[Shoichiro],
Topographic Evolution Involving Co-Seismic Landslide, Deformation, Long-Term Folding and Isostatic Rebound: A Case Study on the 2004 Chuetsu Earthquake,
RS(13), No. 6, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Liang, R.B.[Ru-Bing], Dai, K.[Keren], Shi, X.L.[Xian-Lin], Guo, B.[Bin], Dong, X.J.[Xiu-Jun], Liang, F.[Feng], Tomás, R.[Roberto], Wen, N.L.[Ning-Ling], Fan, X.M.[Xuan-Mei],
Automated Mapping of Ms 7.0 Jiuzhaigou Earthquake (China) Post-Disaster Landslides Based on High-Resolution UAV Imagery,
RS(13), No. 7, 2021, pp. xx-yy.
DOI Link 2104
BibRef

Han, X.[Xiang], Yin, Y.H.[Yun-He], Wu, Y.M.[Yu-Ming], Wu, S.H.[Shao-Hong],
Risk Assessment of Population Loss Posed by Earthquake-Landslide-Debris Flow Disaster Chain: A Case Study in Wenchuan, China,
IJGI(10), No. 6, 2021, pp. xx-yy.
DOI Link 2106
BibRef

Kang, K.H.[Keng-Hao], Chao, W.A.[Wei-An], Yang, C.M.[Che-Ming], Chung, M.C.[Ming-Chien], Kuo, Y.T.[Yu-Ting], Yeh, C.H.[Chih-Hsiang], Liu, H.C.[Hsin-Chang], Lin, C.H.[Chun-Hung], Lin, C.P.[Chih-Pin], Liao, J.J.[Jyh-Jong], Chang, J.M.[Jui-Ming], Ngui, Y.J.[Yin-Jeh], Chen, C.H.[Chien-Hsin], Tai, T.L.[Tung-Lin],
Rigidity Strengthening of Landslide Materials Measured by Seismic Interferometry,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Sarvandani, M.M.[Mohamadhasan Mohamadian], Kästle, E.[Emanuel], Boschi, L.[Lapo], Leroy, S.[Sylvie], Cannat, M.[Mathilde],
Seismic Ambient Noise Imaging of a Quasi-Amagmatic Ultra-Slow Spreading Ridge,
RS(13), No. 14, 2021, pp. xx-yy.
DOI Link 2107
BibRef

Li, Y.[Yao], Cui, P.[Peng], Ye, C.M.[Cheng-Ming], Marcato Junior, J.[José], Zhang, Z.T.[Zheng-Tao], Guo, J.[Jian], Li, J.[Jonathan],
Accurate Prediction of Earthquake-Induced Landslides Based on Deep Learning Considering Landslide Source Area,
RS(13), No. 17, 2021, pp. xx-yy.
DOI Link 2109
BibRef

Qi, T.J.[Tian-Jun], Zhao, Y.[Yan], Meng, X.M.[Xing-Min], Shi, W.[Wei], Qing, F.[Feng], Chen, G.[Guan], Zhang, Y.[Yi], Yue, D.X.[Dong-Xia], Guo, F.Y.[Fu-Yun],
Distribution Modeling and Factor Correlation Analysis of Landslides in the Large Fault Zone of the Western Qinling Mountains: A Machine Learning Algorithm,
RS(13), No. 24, 2021, pp. xx-yy.
DOI Link 2112
BibRef

Li, X.[Xue], Wang, C.S.[Chi-Sheng], Zhu, C.[Chuanhua], Wang, S.Y.[Shu-Ying], Li, W.D.[Wei-Dong], Wang, L.[Leyang], Zhu, W.[Wu],
Coseismic Deformation Field Extraction and Fault Slip Inversion of the 2021 Yangbi MW 6.1 Earthquake, Yunnan Province, Based on Time-Series InSAR,
RS(14), No. 4, 2022, pp. xx-yy.
DOI Link 2202
BibRef

Wang, X.[Xin], Fan, X.M.[Xuan-Mei], Xu, Q.[Qiang], Du, P.J.[Pei-Jun],
Change detection-based co-seismic landslide mapping through extended morphological profiles and ensemble strategy,
PandRS(187), 2022, pp. 225-239.
Elsevier DOI 2205
Co-seismic landslide mapping, Remote sensing, Change detection, Change vector analysis (CVA), Multiple classifier ensemble BibRef

Demissie, Z.S.[Zelalem S.], Rimmington, G.[Glyn],
Surface Displacements Mechanism of the Dobi Graben from ASAR Time-Series Analysis of InSAR: Implications for the Tectonic Setting in the Central Afar Depression, Ethiopia,
RS(14), No. 8, 2022, pp. xx-yy.
DOI Link 2205
BibRef

Zhang, W.H.[Wei-Heng], Xu, Y.[Yueren], Guo, X.Y.[Xin-Yi], Li, W.Q.[Wen-Qiao], Du, P.[Peng], Tian, Q.J.[Qin-Jian],
Distribution and Characteristics of Damming Landslides Triggered by 1920 M~8 Haiyuan Earthquake, NW China,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Lin, L.X.[Lin-Xin], Chen, G.[Guan], Shi, W.[Wei], Jin, J.C.[Jia-Cheng], Wu, J.[Jie], Huang, F.C.[Feng-Chun], Chong, Y.[Yan], Meng, Y.[Yang], Li, Y.J.[Ya-Jun], Zhang, Y.[Yi],
Spatiotemporal Evolution Pattern and Driving Mechanisms of Landslides in the Wenchuan Earthquake-Affected Region: A Case Study in the Bailong River Basin, China,
RS(14), No. 10, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Yang, Z.Q.[Zhi-Qiang], Xu, C.[Chong],
Efficient Detection of Earthquake-Triggered Landslides Based on U-Net++: An Example of the 2018 Hokkaido Eastern Iburi (Japan) Mw = 6.6 Earthquake,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Tang, X.C.[Xiao-Chuan], Tu, Z.[Zihan], Wang, Y.[Yu], Liu, M.Z.[Ming-Zhe], Li, D.[Dongfen], Fan, X.M.[Xuan-Mei],
Automatic Detection of Coseismic Landslides Using a New Transformer Method,
RS(14), No. 12, 2022, pp. xx-yy.
DOI Link 2206
BibRef

Feng, H.X.[Hai-Xia], Miao, Z.[Zelang], Hu, Q.W.[Qing-Wu],
Study on the Uncertainty of Machine Learning Model for Earthquake-Induced Landslide Susceptibility Assessment,
RS(14), No. 13, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Lu, J.Y.[Jia-Yan], Li, W.[Weile], Zhan, W.W.[Wei-Wei], Tie, Y.[Yongbo],
Distribution and Mobility of Coseismic Landslides Triggered by the 2018 Hokkaido Earthquake in Japan,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Fu, R.[Rao], He, J.[Jing], Liu, G.[Gang], Li, W.[Weile], Mao, J.Q.[Jia-Qi], He, M.[Minhui], Lin, Y.Y.[Yuan-Yang],
Fast Seismic Landslide Detection Based on Improved Mask R-CNN,
RS(14), No. 16, 2022, pp. xx-yy.
DOI Link 2208
BibRef

Zhao, B.[Bo], Li, W.[Weile], Su, L.J.[Li-Jun], Wang, Y.S.[Yun-Sheng], Wu, H.C.[Hao-Chen],
Insights into the Landslides Triggered by the 2022 Lushan Ms 6.1 Earthquake: Spatial Distribution and Controls,
RS(14), No. 17, 2022, pp. xx-yy.
DOI Link 2209
BibRef

Liang, P.[Peng], Xu, Y.[Yueren], Li, W.Q.[Wen-Qiao], Zhang, Y.B.[Yan-Bo], Tian, Q.J.[Qin-Jian],
Automatic Identification of Liquefaction Induced by 2021 Maduo Mw7.3 Earthquake Based on Machine Learning Methods,
RS(14), No. 21, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Zhang, S.H.[Shu-Hao], Wang, Y.[Yawei], Wu, G.[Guang],
Earthquake-Induced Landslide Susceptibility Assessment Using a Novel Model Based on Gradient Boosting Machine Learning and Class Balancing Methods,
RS(14), No. 23, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Himi, M.[Mahjoub], Anton, M.[Mickel], Sendrós, A.[Alex], Abancó, C.[Clàudia], Ercoli, M.[Maurizio], Lovera, R.[Raúl], Deidda, G.P.[Gian Piero], Urruela, A.[Aritz], Rivero, L.[Lluís], Casas, A.[Albert],
Application of Resistivity and Seismic Refraction Tomography for Landslide Stability Assessment in Vallcebre, Spanish Pyrenees,
RS(14), No. 24, 2022, pp. xx-yy.
DOI Link 2212
BibRef

Zheng, X.X.[Xiang-Xiang], Han, L.[Lingyi], He, G.J.[Guo-Jin], Wang, N.[Ning], Wang, G.Z.[Gui-Zhou], Feng, L.[Lei],
Semantic Segmentation Model for Wide-Area Coseismic Landslide Extraction Based on Embedded Multichannel Spectral-Topographic Feature Fusion: A Case Study of the Jiuzhaigou Ms7.0 Earthquake in Sichuan, China,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Yang, Q.Y.[Qi-Yuan], Wang, X.[Xianmin], Zhang, X.L.[Xin-Long], Zheng, J.P.[Jian-Ping], Ke, Y.[Yu], Wang, L.[Lizhe], Guo, H.X.[Hai-Xiang],
A Novel Deep Learning Method for Automatic Recognition of Coseismic Landslides,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

Wang, W.X.[Wen-Xin], Liu-Zeng, J.[Jing], Shao, Y.X.[Yan-Xiu], Wang, Z.J.[Zi-Jun], Han, L.F.[Long-Fei], Shen, X.[Xuwen], Qin, K.[Kexin], Gao, Y.P.[Yun-Peng], Yao, W.Q.[Wen-Qian], Hu, G.M.[Gui-Ming], Zeng, X.[Xianyang], Liu, X.L.[Xiao-Li], Wang, W.[Wei], Cui, F.Z.[Feng-Zhen], Liu, Z.J.[Zhi-Jun], Li, J.Y.[Jin-Yang], Tu, H.W.[Hong-Wei],
Mapping of Soil Liquefaction Associated with the 2021 Mw 7.4 Maduo (Madoi) Earthquake Based on the UAV Photogrammetry Technology,
RS(15), No. 4, 2023, pp. xx-yy.
DOI Link 2303
BibRef

He, C.H.[Cai-Hong], Sun, Q.[Qian], Hu, J.[Jun], Gui, R.[Rong],
Location and Activity Changes of Slow-Moving Landslides Due to an Earthquake: Perspective from InSAR Observations,
RS(15), No. 8, 2023, pp. 1977.
DOI Link 2305
BibRef

Mercurio, C.[Claudio], Calderón-Cucunuba, L.P.[Laura Paola], Argueta-Platero, A.A.[Abel Alexei], Azzara, G.[Grazia], Cappadonia, C.[Chiara], Martinello, C.[Chiara], Rotigliano, E.[Edoardo], Conoscenti, C.[Christian],
Predicting Earthquake-Induced Landslides by Using a Stochastic Modeling Approach: A Case Study of the 2001 El Salvador Coseismic Landslides,
IJGI(12), No. 4, 2023, pp. 178.
DOI Link 2305
BibRef

Scuderi, L.A.[Louis A.], Onyango, E.A.[Evans A.], Nagle-McNaughton, T.[Timothy],
A Remote Sensing and GIS Analysis of Rockfall Distributions from the 5 July 2019 Ridgecrest (MW7.1) and 24 June 2020 Owens Lake (MW5.8) Earthquakes,
RS(15), No. 8, 2023, pp. 1962.
DOI Link 2305
BibRef

Pan, Z.K.[Zeng-Kai], Lang, Q.L.[Qiu-Ling], Zhang, Y.C.[Yi-Chen], Zhang, J.[Jiquan], Yu, C.L.[Cheng-Long], Wu, C.Y.[Chen-Yang],
Geological Hazard Assessment of Secondary Collapses Due to Volcanic Earthquakes on Changbai Mountain in China,
IJGI(12), No. 8, 2023, pp. 307.
DOI Link 2309
BibRef

Asadi, A.[Adel], Baise, L.G.[Laurie Gaskins], Sanon, C.[Christina], Koch, M.[Magaly], Chatterjee, S.[Snehamoy], Moaveni, B.[Babak],
Semi-Supervised Learning Method for the Augmentation of an Incomplete Image-Based Inventory of Earthquake-Induced Soil Liquefaction Surface Effects,
RS(15), No. 19, 2023, pp. 4883.
DOI Link 2310
BibRef

Zeng, Y.[Ying], Zhang, Y.B.[Ying-Bin], Liu, J.[Jing], Wang, Q.D.[Qing-Dong], Zhu, H.[Hui],
Rapid Emergency Response Assessment of Earthquake-Induced Landslides Driven by Fusion of InSAR Deformation Data and Newmark Physical Models,
RS(15), No. 18, 2023, pp. 4605.
DOI Link 2310
BibRef

Zhang, P.F.[Peng-Fei], Qiu, H.Z.[Heng-Zhi], Xu, C.[Chong], Chen, X.L.[Xiao-Li], Zhou, Q.[Qing],
Analysis of the Controlling Effect of Excess Topography on the Distribution of Coseismic Landslides during the Iburi Earthquake, Japan, on 6 September 2018,
RS(15), No. 20, 2023, pp. 5035.
DOI Link 2310
BibRef

Miao, F.S.[Fa-Sheng], Ruan, Q.Y.[Qiu-Yu], Wu, Y.P.[Yi-Ping], Qian, Z.[Zhao], Kong, Z.[Zimo], Qin, Z.K.[Zhang-Kui],
Landslide Dynamic Susceptibility Mapping Base on Machine Learning and the PS-InSAR Coupling Model,
RS(15), No. 22, 2023, pp. 5427.
DOI Link 2311
BibRef

Wang, W.[Wan], Liu, Y.[Yunhua], Fan, X.R.[Xiao-Ran], Ma, C.[Chao], Shan, X.J.[Xin-Jian],
Coseismic Deformation, Fault Slip Distribution, and Coulomb Stress Perturbation of the 2023 Turkiye-Syria Earthquake Doublet Based on SAR Offset Tracking,
RS(15), No. 23, 2023, pp. 5443.
DOI Link 2312
BibRef

Schilirò, L.[Luca], Massaro, L.[Luigi], Forte, G.[Giovanni], Santo, A.[Antonio], Tommasi, P.[Paolo],
Analysis of Earthquake-Triggered Landslides through an Integrated Unmanned Aerial Vehicle-Based Approach: A Case Study from Central Italy,
RS(16), No. 1, 2024, pp. xx-yy.
DOI Link 2401
BibRef

Li, Y.[Yan], Ming, D.P.[Dong-Ping], Zhang, L.[Liang], Niu, Y.Y.[Yun-Yun], Chen, Y.Y.[Yang-Yang],
Seismic Landslide Susceptibility Assessment Using Newmark Displacement Based on a Dual-Channel Convolutional Neural Network,
RS(16), No. 3, 2024, pp. 566.
DOI Link 2402
BibRef


He, G., Wang, A.,
Study on the Application of Airborne Lidar In Seismic Active Faults In The Northern Rim of Qinling Mountain and the Piedmont of Huashan In China,
ISPRS20(B2:241-246).
DOI Link 2012
BibRef

Jafrasteh, B., Manighetti, I., Zerubia, J.,
Generative Adversarial Networks As A Novel Approach for Tectonic Fault And Fracture Extraction In High-resolution Satellite and Airborne Optical Images,
ISPRS20(B3:1219-1227).
DOI Link 2012
BibRef

She, J., Zhou, X., Liu, F., Cheng, D., Liao, L.,
Preliminary Results and Analyses of Post-earthquake Geological Hazards In Jiuzhaigou Based on Airborne Lidar and Imagery,
ISPRS20(B3:541-545).
DOI Link 2012
BibRef

Ali, M.Z., Chu, H.J., Ullah, S., Shafique, M., Ali, A.,
Utilization of Fine Resolution Satellite Data for Landslide Susceptibility Modelling: a Case Study of Kashmir Earthquake Induced Landslides,
Gi4DM19(25-30).
DOI Link 1912
BibRef

Chapter on Cartography, Aerial Images, Buildings, Roads, Terrain, Forests, Trees, ATR continues in
Surface Deformation From SAR Applied to Earthquakes, Fault Monitoring .


Last update:May 23, 2024 at 14:31:23