Tizhoosh, H.R.,
Krell, G.,
Michaelis, B.,
Knowledge-based enhancement of megavoltage images in radiation therapy
using a hybrid neuro-fuzzy system,
IVC(19), No. 4, March 2001, pp. 217-233.
Elsevier DOI
0102
BibRef
Earlier:
Additive Fuzzy Enhancement and an Associative Memory for
Feature Tracking in Radiation Therapy Images,
ICIP97(II: 398-401).
IEEE DOI
BibRef
Calow, R.,
Gademann, G.,
Krell, G.,
Mecke, R.,
Michaelis, B.,
Riefenstahl, N.,
Walke, M.,
Photogrammetric measurement of patients in radiotherapy,
PandRS(56), No. 5-6, August 2002, pp. 347-359.
HTML Version.
0208
BibRef
Bevilacqua, V.,
Mastronardi, G.,
Piscopo, G.,
Evolutionary approach to inverse planning in coplanar radiotherapy,
IVC(25), No. 2, February 2007, pp. 196-203.
Elsevier DOI
0701
Genetic algorithms, Conformal, Aperture-based,
Intensity modulated radiation therapy
BibRef
He, B.,
Wahl, R.L.,
Du, Y.,
Sgouros, G.,
Jacene, H.,
Flinn, I.,
Frey, E.C.,
Comparison of Residence Time Estimation Methods for Radioimmunotherapy
Dosimetry and Treatment Planning: Monte Carlo Simulation Studies,
MedImg(27), No. 4, April 2008, pp. 521-530.
IEEE DOI
0804
BibRef
Papadakis, A.E.,
Zacharakis, G.,
Maris, T.G.,
Ripoll, J.,
Damilakis, J.,
A New Optical-CT Apparatus for 3-D Radiotherapy Dosimetry:
Is Free Space Scanning Feasible?,
MedImg(29), No. 5, May 2010, pp. 1204-1212.
IEEE DOI
1006
BibRef
Iyengar, S,
Li, X.[Xin],
Xu, H.[Huanhuan],
Mukhopadhyay, S.[Supratik],
Balakrishnan, N.,
Sawant, A.[Amit],
Iyengar, P.[Puneeth],
Toward More Precise Radiotherapy Treatment of Lung Tumors,
Computer(45), No. 1, January 2012, pp. 59-65.
IEEE DOI
1201
Model respiratory motion of the tumors to guide radiotherapy.
BibRef
McIntosh, C.,
Svistoun, I.,
Purdie, T.G.,
Groupwise Conditional Random Forests for Automatic Shape Classification
and Contour Quality Assessment in Radiotherapy Planning,
MedImg(32), No. 6, 2013, pp. 1043-1057.
IEEE DOI
1307
Cancer; Heart; Lungs; radiation therapy
BibRef
Juneja, P.,
Evans, P.M.,
Harris, E.J.,
The Validation Index: A New Metric for Validation of Segmentation
Algorithms Using Two or More Expert Outlines With Application to
Radiotherapy Planning,
MedImg(32), No. 8, 2013, pp. 1481-1489.
IEEE DOI
1308
Brain
BibRef
Schlosser, J.,
Hristov, D.,
Radiolucent 4D Ultrasound Imaging:
System Design and Application to Radiotherapy Guidance,
MedImg(35), No. 10, October 2016, pp. 2292-2300.
IEEE DOI
1610
Computed tomography
BibRef
McIntosh, C.,
Purdie, T.G.,
Contextual Atlas Regression Forests:
Multiple-Atlas-Based Automated Dose Prediction in Radiation Therapy,
MedImg(35), No. 4, April 2016, pp. 1000-1012.
IEEE DOI
1604
Breast
BibRef
Lê, M.,
Delingette, H.,
Kalpathy-Cramer, J.,
Gerstner, E.R.,
Batchelor, T.,
Unkelbach, J.,
Ayache, N.,
Personalized Radiotherapy Planning Based on a Computational Tumor
Growth Model,
MedImg(36), No. 3, March 2017, pp. 815-825.
IEEE DOI
1703
Brain modeling
BibRef
Wang, Z.S.[Zhen-Song],
Wei, L.F.[Li-Fang],
Wang, L.[Li],
Gao, Y.Z.[Yao-Zong],
Chen, W.F.[Wu-Fan],
Shen, D.G.[Ding-Gang],
Hierarchical Vertex Regression-Based Segmentation of Head and Neck CT
Images for Radiotherapy Planning,
IP(27), No. 2, February 2018, pp. 923-937.
IEEE DOI
1712
Biomedical imaging, Computed tomography, Deformable models,
Image segmentation, Shape, Testing, Training, Image segmentation,
vertex regression
BibRef
Shams, R.,
Xiao, Y.,
Hébert, F.,
Abramowitz, M.,
Brooks, R.,
Rivaz, H.,
Assessment of Rigid Registration Quality Measures in
Ultrasound-Guided Radiotherapy,
MedImg(37), No. 2, February 2018, pp. 428-437.
IEEE DOI
1802
Bayes methods, Image registration, Supervised learning,
Training, Ultrasonic imaging, supervised learning
BibRef
Schipaanboord, B.,
Boukerroui, D.,
Peressutti, D.,
van Soest, J.,
Lustberg, T.,
Dekker, A.,
van Elmpt, W.,
Gooding, M.J.,
An Evaluation of Atlas Selection Methods for Atlas-Based Automatic
Segmentation in Radiotherapy Treatment Planning,
MedImg(38), No. 11, November 2019, pp. 2654-2664.
IEEE DOI
1911
Image segmentation, Computed tomography, Planning, Databases, Neck,
Strain, Measurement, Multi-atlas segmentation, atlas selection, radiotherapy
BibRef
Lipková, J.,
Angelikopoulos, P.,
Wu, S.,
Alberts, E.,
Wiestler, B.,
Diehl, C.,
Preibisch, C.,
Pyka, T.,
Combs, S.E.,
Hadjidoukas, P.,
van Leemput, K.,
Koumoutsakos, P.,
Lowengrub, J.,
Menze, B.,
Personalized Radiotherapy Design for Glioblastoma: Integrating
Mathematical Tumor Models, Multimodal Scans, and Bayesian Inference,
MedImg(38), No. 8, August 2019, pp. 1875-1884.
IEEE DOI
1908
Tumors, Mathematical model, Bayes methods, Biomedical imaging,
Magnetic resonance imaging, Predictive models, Glioblastoma,
multimodal medical scans
BibRef
Singh, D.[Deepika],
Singh, A.K.[Ashutosh Kumar],
Tiwari, S.[Sonia],
Breast Thermography as an Adjunct Tool to Monitor the Chemotherapy
Response in a Triple Negative BIRADS V Cancer Patient: A Case Study,
MedImg(41), No. 3, March 2022, pp. 737-745.
IEEE DOI
2203
Breast, Chemotherapy, Breast cancer, Tumors, Tools, Monitoring,
Thermal analysis, Breast thermogram, invasive ductal-carcinoma,
statistical features
BibRef
Qi, X.F.[Xiao-Feng],
Hu, J.J.[Jun-Jie],
Zhang, L.[Lei],
Bai, S.[Sen],
Yi, Z.[Zhang],
Automated Segmentation of the Clinical Target Volume in the Planning
CT for Breast Cancer Using Deep Neural Networks,
Cyber(52), No. 5, May 2022, pp. 3446-3456.
IEEE DOI
2206
Computed tomography, Image segmentation, Breast cancer, Planning,
Feature extraction, Breast cancer, clinical target volume (CTV),
radiotherapy
BibRef
Huttinga, N.R.F.[Niek R. F.],
Bruijnen, T.[Tom],
van den Berg, C.A.T.[Cornelis A. T.],
Sbrizzi, A.[Alessandro],
Real-Time Non-Rigid 3D Respiratory Motion Estimation for MR-Guided
Radiotherapy Using MR-MOTUS,
MedImg(41), No. 2, February 2022, pp. 332-346.
IEEE DOI
2202
Image reconstruction, Real-time systems, Dynamics,
Motion estimation, Data models, Magnetic resonance imaging,
iterative reconstruction
BibRef
Chandran, L.P.[Lekshmy P.],
Rahiman, A.N.K.P.A.[Abdul Nazeer Kochannan Parampil Abdul],
Puzhakkal, N.[Niyas],
Makuni, D.[Dinesh],
A 3D U-Net based two stage deep learning framework for predicting
dose distributions in radiation treatment planning,
IJIST(34), No. 1, 2024, pp. e22939.
DOI Link
2401
deep learning, dose volume histogram (DVH),
knowledge based planning, radiotherapy, transfer learning, U-Net
BibRef
Xie, L.Q.[Lisi-Qi],
He, K.J.[Kang-Jian],
Xu, D.[Dan],
Fu, Q.G.[Qing-Guo],
A Personalized Image-Guided-Radiotherapy Workflow Based on Subtypes
of Diagnostic Site,
ICIVC22(488-497)
IEEE DOI
2301
Performance evaluation, Image registration, Head, Medical services,
Oncology, Neck, Image reconstruction, IGRT, radiotherapy, CBCT,
site-specific workflow
BibRef
Kodym, O.[Oldrich],
Španel, M.[Michal],
Herout, A.[Adam],
Segmentation of Head and Neck Organs at Risk Using CNN with Batch Dice
Loss,
GCPR18(105-114).
Springer DOI
1905
CT. Radiotherapy planning.
BibRef
He, T.C.[Tian-Cheng],
Pino, R.[Ramiro],
Teh, B.[Bin],
Wong, S.[Stephen],
Xue, Z.[Zhong],
Dynamic Respiratory Motion Estimation Using Patch-Based Kernel-PCA
Priors for Lung Cancer Radiotherapy,
RAMBO17(55-65).
Springer DOI
1711
BibRef
Wodzinski, M.,
Skalski, A.,
Kedzierawski, P.,
Kuszewski, T.,
Application of B-splines FFD image registration in breast cancer
radiotherapy planning,
WSSIP17(1-5)
IEEE DOI
1707
Breast cancer, Image registration, Measurement,
Splines (mathematics), Tumors,
B-splines, breast cancer, free-form registration,
image registration, radiotherapy
BibRef
Zhao, X.[Xuan],
Wang, Y.[Yao],
Jozsef, G.[Gabor],
Robust shape-constrained active contour for whole heart segmentation
in 3-D CT images for radiotherapy planning,
ICIP14(1-5)
IEEE DOI
1502
Active contours
BibRef
Stefano, A.[Alessandro],
Vitabile, S.[Salvatore],
A Graph-Based Method for PET Image Segmentation in Radiotherapy
Planning: A Pilot Study,
CIAP13(II:711-720).
Springer DOI
1309
BibRef
Huang, W.[Wei],
Li, J.[Jing],
Zhang, P.[Peng],
Wan, M.[Min],
A novel marker-less tumor tracking strategyonlow-rank fluoroscopic
images for image-guided lung cancer radiotherapy,
ICIP13(1399-1403)
IEEE DOI
1402
Fluoroscopic image
BibRef
Li, D.W.[Deng-Wang],
Wang, X.Y.[Xiu-Ying],
Wang, H.J.[Hong-Jun],
Yin, Y.[Yong],
Feng, D.D.[David Dagan],
Multiscale deformable registration using edge preserving scale space
for adaptive radiation therapy,
ICIP10(4409-4412).
IEEE DOI
1009
BibRef
Slagmolen, P.[Pieter],
Loeckx, D.[Dirk],
Roels, S.[Sarah],
Geets, X.[Xavier],
Maes, F.[Frederik],
Haustermans, K.[Karin],
Suetens, P.[Paul],
Nonrigid Registration of Multitemporal CT and MR Images for
Radiotherapy Treatment Planning,
WBIR06(297-305).
Springer DOI
0607
BibRef
Posada, R.,
Daul, C.,
Wolf, D.,
Aletti, P.,
Miranda, R.,
Towards a fractioned treatment in conformal radiotherapy using
3d-multimodal data registration,
ICIP04(III: 1911-1914).
IEEE DOI
0505
BibRef
Orkisz, M.[Maciej],
Frery, A.[Anne],
Chapet, O.[Olivier],
Mornex, F.[Françoise],
Magnin, I.E.[Isabelle E.],
Attempts to Bronchial Tumor Motion Tracking in Portal Images during
Conformal Radiotherapy Treatment,
CAIP01(247 ff.).
Springer DOI
0210
BibRef
Bendl, R.,
Hoess, A.,
Schlegel, W.,
Virtual Simulation In Radiotherapy Planning,
CVRMed95(XX-YY)
BibRef
9500
Chapter on Medical Applications, CAT, MRI, Ultrasound, Heart Models, Brain Models continues in
Breast Cancer, Mammograms, Analysis, Mammography .